初中数学竞赛知识点(11)

时间:2025-07-06

全面的初中数学竞赛知识点讲解

②分析:a3+b3要配成(a+b)3应添上两项3a2b+3ab2

解:a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3abc-3a2b-3ab2

=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)[(a+b)2-(a+b)c+c2]-3 ab(a+b+c)

=(a+b+c)(a2+b2+c2-ab-ac-bc)

例2因式分解:①x3-11x+20 ② a5+a+1

① 分析:把中项-11x拆成-16x+5x 分别与x5,20组成两组,则有公因式可提。(注意这

里16是完全平方数)

② 解:x3-11x+20=x3-16x+5x+20=x(x2-16)+5(x+4)

=x(x+4)(x-4)+5(x+4) =(x+4)(x2-4x+5)

③ 分析:添上-a2 和a2两项,分别与a5和a+1组成两组,正好可以用立方差公式

解:a5+a+1=a5-a2+a2+a+1=a2(a3-1)+ a2+a+1

=a2(a-1)( a2+a+1)+ a2+a+1= (a2+a+1)(a3-a2+1)

2. 运用因式定理和待定系数法

定理:⑴若x=a时,f(x)=0, [即f(a)=0],则多项式f(x)有一次因式x-a

⑵若两个多项式相等,则它们同类项的系数相等。

例3因式分解:①x3-5x2+9x-6 ②2x3-13x2+3

①分析:以x=±1,±2,±3,±6(常数6的约数)分别代入原式,若值为0,则可找到一次

因式,然后用除法或待定系数法,求另一个因式。

解:∵x=2时,x3-5x2+9x-6=0,∴原式有一次因式x -2,

∴x3-5x2+9x-6=(x -2)(x2-3x+3,)

②分析:用最高次项的系数2的约数±1,±2分别去除常数项3的约数

±1,±3得商±1,±2,±

可知只有当x=

解:∵x=13,±,再分别以这些商代入原式求值, 221时,原式值为0。故可知有因式2x-1 21时,2x3-13x2+3=0,∴原式有一次因式2x-1, 2

设2x3-13x2+3=(2x-1)(x2+ax-3), (a是待定系数)

比较右边和左边x2的系数得 2a-1=-13, a=-6

∴2x3-13x+3=(2x-1)(x2-6x-3)。

例4因式分解2x2+3xy-9y2+14x-3y+20

解:∵2x2+3xy-9y2=(2x-3y)(x+3y), 用待定系数法,可设

2x2+3xy-9y2+14x-3y+20=(2x-3y+a)(x+3y+b),a,b是待定的系数,

比较右边和左边的x和y两项 的系数,得

a 4 a 2b 14 解得 b 5 3a 3b 3

∴2x2+3xy-9y2+14x-3y+20=(2x-3y+4)(x+3y+5)

又解:原式=2x2+(3y+14)x-(9y2+3y-20) 这是关于x的二次三项式

常数项可分解为-(3y-4)(3y+5),用待定系数法,可设

2x2+(3y+14)x-(9y2+3y-20)=[mx-(3y-4)][nx+(3y+5)]

比较左、右两边的x2和x项的系数,得m=2, n=1

∴2x2+3xy-9y2+14x-3y+20=(2x-3y+4)(x+3y+5)

初中数学竞赛知识点(11).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219