初中数学竞赛知识点(11)
时间:2025-07-06
时间:2025-07-06
全面的初中数学竞赛知识点讲解
②分析:a3+b3要配成(a+b)3应添上两项3a2b+3ab2
解:a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3abc-3a2b-3ab2
=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)[(a+b)2-(a+b)c+c2]-3 ab(a+b+c)
=(a+b+c)(a2+b2+c2-ab-ac-bc)
例2因式分解:①x3-11x+20 ② a5+a+1
① 分析:把中项-11x拆成-16x+5x 分别与x5,20组成两组,则有公因式可提。(注意这
里16是完全平方数)
② 解:x3-11x+20=x3-16x+5x+20=x(x2-16)+5(x+4)
=x(x+4)(x-4)+5(x+4) =(x+4)(x2-4x+5)
③ 分析:添上-a2 和a2两项,分别与a5和a+1组成两组,正好可以用立方差公式
解:a5+a+1=a5-a2+a2+a+1=a2(a3-1)+ a2+a+1
=a2(a-1)( a2+a+1)+ a2+a+1= (a2+a+1)(a3-a2+1)
2. 运用因式定理和待定系数法
定理:⑴若x=a时,f(x)=0, [即f(a)=0],则多项式f(x)有一次因式x-a
⑵若两个多项式相等,则它们同类项的系数相等。
例3因式分解:①x3-5x2+9x-6 ②2x3-13x2+3
①分析:以x=±1,±2,±3,±6(常数6的约数)分别代入原式,若值为0,则可找到一次
因式,然后用除法或待定系数法,求另一个因式。
解:∵x=2时,x3-5x2+9x-6=0,∴原式有一次因式x -2,
∴x3-5x2+9x-6=(x -2)(x2-3x+3,)
②分析:用最高次项的系数2的约数±1,±2分别去除常数项3的约数
±1,±3得商±1,±2,±
可知只有当x=
解:∵x=13,±,再分别以这些商代入原式求值, 221时,原式值为0。故可知有因式2x-1 21时,2x3-13x2+3=0,∴原式有一次因式2x-1, 2
设2x3-13x2+3=(2x-1)(x2+ax-3), (a是待定系数)
比较右边和左边x2的系数得 2a-1=-13, a=-6
∴2x3-13x+3=(2x-1)(x2-6x-3)。
例4因式分解2x2+3xy-9y2+14x-3y+20
解:∵2x2+3xy-9y2=(2x-3y)(x+3y), 用待定系数法,可设
2x2+3xy-9y2+14x-3y+20=(2x-3y+a)(x+3y+b),a,b是待定的系数,
比较右边和左边的x和y两项 的系数,得
a 4 a 2b 14 解得 b 5 3a 3b 3
∴2x2+3xy-9y2+14x-3y+20=(2x-3y+4)(x+3y+5)
又解:原式=2x2+(3y+14)x-(9y2+3y-20) 这是关于x的二次三项式
常数项可分解为-(3y-4)(3y+5),用待定系数法,可设
2x2+(3y+14)x-(9y2+3y-20)=[mx-(3y-4)][nx+(3y+5)]
比较左、右两边的x2和x项的系数,得m=2, n=1
∴2x2+3xy-9y2+14x-3y+20=(2x-3y+4)(x+3y+5)
上一篇:抛丸机点检表日常点检表