初中数学竞赛知识点(6)

时间:2025-07-06

全面的初中数学竞赛知识点讲解

1, 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。一元方程的

解也叫做根。

例如:方程 2x+6=0, x(x-1)=0, |x|=6, 0x=0, 0x=2的解

分别是: x=-3, x=0或x=1, x=±6, 所有的数,无解。

2, 关于x 的一元一次方程的解(根)的情况:化为最简方程ax=b后,

讨论它的解:当a≠0时,有唯一的解 x=b; a

当a=0且b≠0时,无解;

当a=0且b=0时,有无数多解。(∵不论x取什么值,0x=0都成立)

3, 求方程ax=b(a≠0)的整数解、正整数解、正数解

当a|b时,方程有整数解;

当a|b,且a、b同号时,方程有正整数解;

当a、b同号时,方程的解是正数。

综上所述,讨论一元一次方程的解,一般应先化为最简方程ax=b

十、二元一次方程的整数解

1, 二元一次方程整数解存在的条件:在整系数方程ax+by=c中,

若a,b的最大公约数能整除c,则方程有整数解。即

如果(a,b)|c 则方程ax+by=c有整数解

显然a,b互质时一定有整数解。

例如方程3x+5y=1, 5x-2y=7, 9x+3y=6都有整数解。

返过来也成立,方程9x+3y=10和 4x-2y=1都没有整数解,

∵(9,3)=3,而3不能整除10;(4,2)=2,而2不能整除1。

一般我们在正整数集合里研究公约数,(a,b)中的a,b实为它们的绝对值。

2, 二元一次方程整数解的求法:

若方程ax+by=c有整数解,一般都有无数多个,常引入整数k来表示它的通解(即所有的

解)。k叫做参变数。

方法一,整除法:求方程5x+11y=1的整数解

1 11y1 y 10y1 y 2y (1) , =555

1 y k(k是整数) 设,则y=1-5k (2) , 5解:x=

把(2)代入(1)得x=k-2(1-5k)=11k-2

∴原方程所有的整数解是

方法二,公式法: x 11k 2(k是整数) y 1 5k

x x0 x x0 bk设ax+by=c有整数解 则通解是 (x0,y0可用观察法) y y aky y00

3, 求二元一次方程的正整数解:

① 出整数解的通解,再解x,y的不等式组,确定k值

② 用观察法直接写出。

十一、二元一次方程组解的讨论

初中数学竞赛知识点(6).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219