初中数学竞赛知识点(6)
时间:2025-07-06
时间:2025-07-06
全面的初中数学竞赛知识点讲解
1, 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。一元方程的
解也叫做根。
例如:方程 2x+6=0, x(x-1)=0, |x|=6, 0x=0, 0x=2的解
分别是: x=-3, x=0或x=1, x=±6, 所有的数,无解。
2, 关于x 的一元一次方程的解(根)的情况:化为最简方程ax=b后,
讨论它的解:当a≠0时,有唯一的解 x=b; a
当a=0且b≠0时,无解;
当a=0且b=0时,有无数多解。(∵不论x取什么值,0x=0都成立)
3, 求方程ax=b(a≠0)的整数解、正整数解、正数解
当a|b时,方程有整数解;
当a|b,且a、b同号时,方程有正整数解;
当a、b同号时,方程的解是正数。
综上所述,讨论一元一次方程的解,一般应先化为最简方程ax=b
十、二元一次方程的整数解
1, 二元一次方程整数解存在的条件:在整系数方程ax+by=c中,
若a,b的最大公约数能整除c,则方程有整数解。即
如果(a,b)|c 则方程ax+by=c有整数解
显然a,b互质时一定有整数解。
例如方程3x+5y=1, 5x-2y=7, 9x+3y=6都有整数解。
返过来也成立,方程9x+3y=10和 4x-2y=1都没有整数解,
∵(9,3)=3,而3不能整除10;(4,2)=2,而2不能整除1。
一般我们在正整数集合里研究公约数,(a,b)中的a,b实为它们的绝对值。
2, 二元一次方程整数解的求法:
若方程ax+by=c有整数解,一般都有无数多个,常引入整数k来表示它的通解(即所有的
解)。k叫做参变数。
方法一,整除法:求方程5x+11y=1的整数解
1 11y1 y 10y1 y 2y (1) , =555
1 y k(k是整数) 设,则y=1-5k (2) , 5解:x=
把(2)代入(1)得x=k-2(1-5k)=11k-2
∴原方程所有的整数解是
方法二,公式法: x 11k 2(k是整数) y 1 5k
x x0 x x0 bk设ax+by=c有整数解 则通解是 (x0,y0可用观察法) y y aky y00
3, 求二元一次方程的正整数解:
① 出整数解的通解,再解x,y的不等式组,确定k值
② 用观察法直接写出。
十一、二元一次方程组解的讨论
上一篇:抛丸机点检表日常点检表