初中数学竞赛知识点(4)
时间:2025-07-06
时间:2025-07-06
全面的初中数学竞赛知识点讲解
Z(1010)=3,R()=1;又如设 x 表示不大于x的最大整数,那么 5.2 =5, 5.2 33
=-6, 2 =0, 3 =-3。 3
正确使用符号的关健是明确它所表示的意义(即定义)
对题设中临时约定的符号,一定要扣紧定义,由简到繁,由浅入深,由具体到抽象,
逐步加深理解。
在解题过程中为了简明表述,需要临时引用辅助符号时,必须先作出明确的定义,所用
符号不要与常规符号混淆。
七、用字母表示数
1, 用字母表示数最明显的好处是能把数量间的关系简明而普遍地表达出来,从具体的数字
计算到用抽象的字母概括运算规律上,是一种飞跃。
2, 用字母表示数时,字母所取的值,应使代数式有意义,并使它所表示的实际问题有意义。
例如①写出数a的倒数 ②用字母表示一切偶数
解:①当a≠0时, a的倒数是1 a
②设n为整数, 2n可表示所有偶数。
3, 命题中的字母,一般要注明取值范围,在没有说明的情况下,它表示所学过的数,并且
能使题设有意义。
例题① 化简:⑴|x -3|(x<3) ⑵| x+5|
解:⑴∵x<3,∴x-3<0,
∴|x-3|=-(x-3)=-x+3
⑵当x -5时,|x+5|=x+5,
当x <-5时,|x+5|=-x-5(本题x 表示所有学过的数)
例② 己知十位上的数是a,个位数是b ,试写出这个两位数
解:这个两位数是10a+b
(本题字母a、b的取值是默认题设有意义,即a 表示1到9的整数,b表示0到9
的整数)
4, 用字母等式表示运算定律、性质、法则、公式时,一般左边作为题设,所用的字母是使
左边代数式有意义的,所以只对变形到右边所增加的字母的取值加以说明。
例如用字母表示:①分数的基本性质 ②分数除法法则 解:①分数的基本性质是bbmbb m (m≠0), (m≠0) aamaa m
a作为左边的分母不另说明a≠0, ②bdbc (d≠0) d在左边是分子到了右边变分母,故另加说明。 acad
116822412(16 24 ) 2 = 817171717175, 用字母等式表示运算定律、性质、法则、公式,不仅可从左到右顺用,还可从右到左逆用;公式可以变形,变形时字母取值范围有变化时应加说明。例如: 乘法分配律,顺用a(b+c)=ab+ac,
逆用5a+5b=5(a+b), 6.25×3.14-5.25×3.14=3.14(6.25-5.25)=3.14
上一篇:抛丸机点检表日常点检表