概率论与数理统计(茆诗松)第二版课后第三章习题(15)
时间:2025-07-08
时间:2025-07-08
习题3.3
1. 设二维随机变量(X, Y ) 的联合分布列为
YX12
123
0.070.110.220.040
.070.09
试分布求U = max{X, Y } 和V = min{X, Y } 的分布列.
解:因P{U = 1} = P{X = 0, Y = 1} + P{X = 1, Y = 1} = 0.05 + 0.07 = 0.12;
P{U = 2} = P{X = 0, Y = 2} + P{X = 1, Y = 2} + P{X = 2, Y = 2} + P{X = 2, Y = 1}
= 0.15 + 0.11 + 0.07 + 0.04 = 0.37;
P{U = 3} = P{X = 0, Y = 3} + P{X = 1, Y = 3} + P{X = 2, Y = 3} = 0.20 + 0.22 + 0.09 = 0.51; 故U的分布列为
UP123
0.120.370.51
因P{V = 0} = P{X = 0, Y = 1} + P{X = 0, Y = 2} + P{X = 0, Y = 3} = 0.05 + 0.15 + 0.20 = 0.40; P{V = 1} = P{X = 1, Y = 1} + P{X = 1, Y = 2} + P{X = 1, Y = 3} + P{X = 2, Y = 1}
= 0.07 + 0.11 + 0.22 + 0.04 = 0.44;
P{V = 2} = P{X = 2, Y = 2} + P{X = 2, Y = 3} = 0.07 + 0.09 = 0.16; 故V的分布列为
V012
P0.400.440.16
2. 设X和Y是相互独立的随机变量,且X ~ Exp(λ ),Y ~ Exp(µ ).如果定义随机变量Z如下
1,当X≤Y,
Z=
0,当X>Y.
求Z的分布列.
解:因(X, Y ) 的联合密度函数为
λµe (λx+µy),x>0,y>0,
p(x,y)=pX(x)pY(y)=
0,其他.
则P{Z=1}=P{X≤Y}=∫
+∞
+∞
+∞
dx∫λµe (λx+µy)dy=∫dx ( λ)e (λx+µy)
x
+∞+∞
x
=∫λe (λ+µ)xdx=
λλ+µ
,
e (λ+µ)x
+∞
=
λλ+µ
,
P{Z=0}=1 P{Z=1}=
故Z的分布列为
µλ+µ
P
λ+µ
λ+µ
上一篇:建筑业年度安全教育培训考试试卷
下一篇:《普通话水平测试(PSC)大纲》