概率论与数理统计(茆诗松)第二版课后第三章习题(2)

时间:2025-07-08

(1)(X1, X2, X3)的联合分布列; (2)(X1, X2)的联合分布列. 解:(1)P{(X1,X2,X3)=(0,0,0)}=

8762887570

=,P{(X1,X2,X3)=(0,0,1)}= =, 1312111431312114298577058770

P{(X1,X2,X3)=(0,1,0)}= =,P{(X1,X2,X3)=(1,0,0)}= =,

1312114291312114298544058440

P{(X1,X2,X3)=(0,1,1)}= =,P{(X1,X2,X3)=(1,0,1)}= =,

131211429131211429548405435

P{(X1,X2,X3)=(1,1,0)}= =,P{(X1,X2,X3)=(1,1,1)}= =;

13121142913121114387148510

(2)P{(X1,X2)=(0,0)}= =,P{(X1,X2)=(0,1)}= =,

1312391312395810545

P{(X1,X2)=(1,0)}= =,P{(X1,X2)=(1,1)}= =.

131239131239

X2

01

X1

110/395/39

4. 设随机变量Xi , i =1, 2的分布列如下,且满足P{X1X2 = 0} = 1,试求P{X1 = X2}.

XiP 101

0.250.50.25

解:因P{X1 X2 = 0} = 1,有P{X1 X2 ≠ 0} = 0,

即P{X1 = 1, X2 = 1} = P{X1 = 1, X2 = 1} = P{X1 = 1, X2 = 1} = P{X1 = 1, X2 = 1} = 0,分布列为

故P{X1 = X2} = P{X1 = 1, X2 = 1} + P{X1 = 0, X2 = 0} + P{X1 = 1, X2 = 1} = 0. 5. 设随机变量 (X, Y ) 的联合密度函数为

k(6 x y),0<x<2,2<y<4,

p(x,y)=

0,.其他

试求

(1)常数k;

(2)P{X < 1, Y < 3}; (3)P{X < 1.5}; (4)P{X + Y ≤ 4}. 解:(1)由正则性:∫

+∞+∞ ∞ ∞

p(x,y)dxdy=1,得

2

dx k 6yxy

2

dx∫k(6 x y)dy=∫

2

4

概率论与数理统计(茆诗松)第二版课后第三章习题(2).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219