概率论与数理统计(茆诗松)第二版课后第三章习题(2)
时间:2025-07-08
时间:2025-07-08
(1)(X1, X2, X3)的联合分布列; (2)(X1, X2)的联合分布列. 解:(1)P{(X1,X2,X3)=(0,0,0)}=
8762887570
=,P{(X1,X2,X3)=(0,0,1)}= =, 1312111431312114298577058770
P{(X1,X2,X3)=(0,1,0)}= =,P{(X1,X2,X3)=(1,0,0)}= =,
1312114291312114298544058440
P{(X1,X2,X3)=(0,1,1)}= =,P{(X1,X2,X3)=(1,0,1)}= =,
131211429131211429548405435
P{(X1,X2,X3)=(1,1,0)}= =,P{(X1,X2,X3)=(1,1,1)}= =;
13121142913121114387148510
(2)P{(X1,X2)=(0,0)}= =,P{(X1,X2)=(0,1)}= =,
1312391312395810545
P{(X1,X2)=(1,0)}= =,P{(X1,X2)=(1,1)}= =.
131239131239
X2
01
X1
110/395/39
4. 设随机变量Xi , i =1, 2的分布列如下,且满足P{X1X2 = 0} = 1,试求P{X1 = X2}.
XiP 101
0.250.50.25
解:因P{X1 X2 = 0} = 1,有P{X1 X2 ≠ 0} = 0,
即P{X1 = 1, X2 = 1} = P{X1 = 1, X2 = 1} = P{X1 = 1, X2 = 1} = P{X1 = 1, X2 = 1} = 0,分布列为
故P{X1 = X2} = P{X1 = 1, X2 = 1} + P{X1 = 0, X2 = 0} + P{X1 = 1, X2 = 1} = 0. 5. 设随机变量 (X, Y ) 的联合密度函数为
k(6 x y),0<x<2,2<y<4,
p(x,y)=
0,.其他
试求
(1)常数k;
(2)P{X < 1, Y < 3}; (3)P{X < 1.5}; (4)P{X + Y ≤ 4}. 解:(1)由正则性:∫
+∞+∞ ∞ ∞
∫
p(x,y)dxdy=1,得
2
dx k 6yxy
∫
2
dx∫k(6 x y)dy=∫
2
4
上一篇:建筑业年度安全教育培训考试试卷
下一篇:《普通话水平测试(PSC)大纲》