不完全信息时高考志愿博弈(19)
时间:2025-07-08
时间:2025-07-08
不完全信息时高考博弈分析
Journal of Economic Theory ,2007, Forthcoming
[11] Haluk Ergin, Tayfun Sonmez, “Games of School Choice under the Boston Mechanism” ,
Journal of Public Economics,2006, 90,215-237
[12] Gale, David; Shapley, Lloyd, “College admissions and the stability of marriage” , American
Mathematical Monthly, 1962, 69(1): 9-15
[13] Fuhito Kojima, “Games of School Choice under the Boston Mechanism with General Priority
Structures”, 2006, Mimeo,
[14] D. Majumdar and A. Sen, “Ordinally Bayesian Incentive-Compatible Voting Rules”,
Econometrica, 2004,72, 523-540
[15] Majumdar,Dipjyoti,2007, “Ordinal Bayesian Incentive Compatible Stable Matchings”,
Mimeo, [16] 聂海峰a,“高考录取机制的博弈分析”,《经济学季刊》,2007年第6卷第3期(总25
期),第899-916页 [17] 聂海峰b,“考得好不如报得好么——高考志愿填报博弈研究?”《南方经济》,2007年
第7期,第23-36页
[18] Roth, A. E., “The evolution of the labor market for medical interns and residents: A case
study in game theory”; Journal. Political. Economy, 1984,Vol. 92, 991-1016
[19] Roth, A.E., “Two-Sided Matching with Incomplete Information about Others’ Preferences”,
Games and Economic Behavior, 1989, Vol. 1, 191-209
[20] Roth, A.E., "A Natural Experiment in the Organization of Entry Level Labor Markets:
Regional Markets for New Physicians and Surgeons in the U.K.," American Economic Review, 1991, vol. 81, 415-440.
[21] Roth, A. E., “The economist as engineer: Game theory, experimental economics and
computation as tools of design economics”, Econometrica, 2004,Vol. 70, p1341-1378
[22] A.E. Roth and U. Rothblum, “Truncation Strategies in Matching Markets- In Search of
Advice for Participants”, Econometrica, 1999, 67, 21-43 (1999).
[23] Roth, A. E., Sotomayor, M., Two-Sided Matching: A Study in Game Theoretic Modeling and
Analysis , Cambridge University. Press, London/New York,1990, [24] 钟笑寒、程娜、何云帆,“花落谁家 ——高考志愿填报机制的博弈模型”,《经济学季刊》,
2004,第3卷第3期(总第11期),763--778
下一篇:【测试】作业3 程序设计基础