第二章 插值法(11)

发布时间:2021-06-07

数值分析中对插值法的简单讲义

把x看成 a,b 上的一个点,若f x 是x的n次多项式,则一阶差商f x,x0 是x的n-1次多项式;二阶差商f x,x0,x1 是x的n-2次多项式; 一般地:

n次多项式f x 的k阶差商f x,x0,x1, ,x是x的n-k次多项式k 1

(k n),当k>n时,k阶差商为零。 由性质3可以证明。 差商的计算

P23 表2.4 2.4.2 牛顿插值公式

把x看成 a,b 上的一个点,可得:

f x f x0 f x,x0 x x0

f x,x0 f x0,x1 f x,x0,x1 x x1 ——由差商的定义式反推得到

f x,x0,x1, ,xn 1 f x0,x1, ,xn f x,x0,x1, ,xn x xn

把后一式代入前一式,就可以得到:

f x f x0 f x0,x1 x x0 f x0,x1,x2 x x0 x x1

f x0,x1, ,xn x x0 x xn 1 f x,x0, ,xn n 1 x Nn x Rn x

其中:

Nn x f x0 f x0,x1 x x0 f x0,x1,x2 x x0 x x1

f x0,x1, ,xn x x0 x xn 1

第二章 插值法(11).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219