中考数学复习专题-一元二次方程(13)
发布时间:2021-06-07
发布时间:2021-06-07
8(m).
(1)若梯子顶端下滑1m,则顶端距地面7m.设梯子底端滑动xm.
2222
则根据勾股定理,列方程7+(6+x)=10,整理,得x+12x-15=0, 解这个方程,得x1≈1.14,x2≈-13.14(舍去), 所以梯子顶端下滑1m,底端水平滑动约1.14m.
(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动xm. 则根据勾股定理,列方程(8-x)+(6+1)=100.整理,得x-16x+13=0. 解这个方程,得x1≈0.86,x2≈15.14(舍去).
所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m. (3)设梯子顶端向下滑动xm时,底端向外也滑动xm.
则根据勾股定理,列方程 (8-x)+(6+x)=10,整理,得2x-4x=0, 解这个方程,得x1=0(舍去),x2=2.
所以梯子顶端向下滑动2m时,底端向外也滑动2m.
说明 求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.
(4)、航海问题
例:如图5所示,我海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航.一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.
(1)小岛D和小岛F相距多少海里?
(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)
解(1)F位于D的正南方向,则DF⊥BC.因为AB⊥BC,D为AC的中点,所以DF=
12
2
2
2
2
2
2
2
A
图5
AB=100海里,所以,小岛D与小岛F相距100海里.
(2)设相遇时补给船航行了x海里,那么DE=x海里,AB+BE=2x海里,EF=AB+BC-(AB+BE)-CF=(300-2x)海里.
在Rt△DEF中,根据勾股定理可得方程x2=1002+(300-2x)2,整理,得3x2-1200x+100000=0.
解这个方程,得x1=200
-
3
≈118.4,x2=
200+
3
(不合题意,舍去).
所以,相遇时补给船大约航行了118.4海里.
说明 求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程.
(5)、几何与图表信息
例:如图6所示,正方形ABCD的边长为12,划分成12×12个小正方形格,将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张
纸片的部分恰好为(n-1)×(n-1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.
请你认真观察思考后回答下列问题:
(1)由于正方形纸片边长n的取值不同, 完成摆放时所使用正方形纸片的张数也不同,请填写下表:
(21为S2.
①当n=2时,求S1∶S2的值;
②是否存在使得S1=S2的n值?若存在,请求出来;若不存在,请说明理由. 解(1)依题意可依次填表为:11、10、9、8、7. (2)S1=n2+(12-n)[n2-(n-1)2]=-n2+25n-12.
①当n=2时,S1=-2+25×2-12=34,S2=12×12-34=110. 所以S1∶S2=34∶110=17∶55. ②若S1=S2,则有-n2+25n-12=
12
2
×122,即n2-25n+84=0,
图6
解这个方程,得n1=4,n2=21(舍去).
所以当n=4时,S1=S2.所以这样的n值是存在的.
说明:求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方
程是否有实数根来加以判断.
(6)、探索存在问题 例:将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形. (1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?
(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.
解(1)设剪成两段后其中一段为xcm,则另一段为(20-x)cm.
x 20 x
则根据题意,得 + =17,解得x1=16,x2=4,
4 4
2
2
当x=16时,20-x=4,当x=4时,20-x=16,
答 这段铁丝剪成两段后的长度分别是4cm和16cm.
(2)不能.理由是:不妨设剪成两段后其中一段为ycm,则另一段为(20-y)cm.则由
y 20 y 22
题意得 + =12,整理,得y-20y+104=0,移项并配方,得(y-10)=-4
4 4
2
2
<0,所以此方程无解,即不能剪成两段使得面积和为12cm.
说明本题的第(2)小问也可以运用求根公式中的b2-4ac来判定.若b2-4ac≥0,方程有两个实数根,若b-4ac<0,方程没有实数根,本题中的b-4ac=-16<0即无解.
(7)、平分几何图形的周长与面积问题
例:如图7,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E 在下底边BC
2
2
2
上一篇:材料科学研究方法复习提纲
下一篇:“创先争优,廉洁从教”演讲比赛