最优化理论与算法(8)
时间:2026-01-15
时间:2026-01-15
y² t ´ (t)3[a,b] 4 :"
£1¤d[a,b]´ (t) ü «m § Iy²t ≤µ"^ y{§b t >µ§K â[a,b]´ (t) ü «mÚλ<µ (λ)> (µ)§ ^ gñ"Ïd§t ≤µ"
£2¤Ón y"
½n3.2.2 ¿Â3u§ÏL' (t)3ü ØÓ:? ¼ê § òü «mÅÚ "‘7© {Ò´|^ ù 5 "
y3 Ä ‘|¢¯K
minφ(t)s.t.t∈[a,b]
Ù¥[a,b]´φ(t) ü «m§K 3 t ∈[a,b]§¦t ´(3.2.3) `)"
‘7© { g ´µÏL' cü «m¥ ü é¡ Á&:? 8I¼ê §±, ½'~ ü «m§¿¦ # Á&:" ü «m ½§Ý §«m¥ :Ñ (3.2.3) Cq `)"
[ai,bi]´ cü «m§λi,µi∈(ai,bi)´ cÁ&:§λi<µi§¿…λiÚµi'u[ai,bi]é¡§=
λi ai=bi µi
' (λi)Ú (µi) " â½n3.2.2§
¹1µe (λi)≤ (µi)§K[ai,µi]´ (t) ü «m§ -ai+1=ai,
bi+1=µi
(3.2.5)(3.2.4)(3.2.3)
¹2µe (λi)> (µi)§K[λi,bi]´ (t) ü «m§ -ai+1=λi,
Ó § ¦÷v^
£1¤ü «m± ½'~α∈(0,1) §=
bi+1 ai+1=α(bi ai);
£2¤ ¹1e λi½ ¹2e µi [ai+1,bi+1] ü é¡ Á&: "3 ¹1e§k Ä^ £1¤"d(3.2.6)Ú(3.2.5)§¿“\(3.2.4)
λi=ai+(1 α)(bi ai),
2 Ä^ £2¤"d(3.2.7)!(3.2.5)Ú(3.2.6)§
λi+1=ai+1+(1 α)(bi+1 ai+1)=ai+α(1 α)(bi ai),
(3.2.8)
µi=ai+α(bi ai).
(3.2.7)(3.2.6)
bi+1=bi