最优化理论与算法(14)
时间:2026-01-15
时间:2026-01-15
½n3.2.11L²§eØ ª(3.2.21)¤á… {3.2.1 ) : {x(k)}k.§K{x(k)} ½k4 :x ´f -½:"
£ ¤ÛÜÂñ5
½n3.2.12 f(x) gëY ": {x(k)}d {3.2.1 )§Ù¥Ú αkdWolfe-Powell.|¢(½§½dArmijo. |¢(½§Ù¥σ1∈(0,1/2)" {x(k)}→x §… f(x )=0, 2f(x ) ½"e
f(x(k))+ 2f(x(k))d(k)
=0,lim
k→∞ d(k)
K
£1¤ k¿© §αk=1"£2¤: {x(k)} 5Âñux "
(3.2.23)
§3.3 eü{
eü{q¡FÝ{§´{IͶêÆ[Cauchyu1947cJÑ |^KFÝ |¢
¦)à å 55y¯K {ü {" !ò‰Ñ eü{ S“Ú½¿y²ÙÂñ5"
! eü
ÄÃ å 55y¯K(UNP)§=
x∈Rn
minf(x),(UNP)
Ù¥f:Rn→RäkëY " â½n3.1.2§I ¦ x §¦ f(x )=0"
eü{±KFÝ 4 z { eü ,q¡FÝ{,´Ã å `z¥ {ü {. f(x(k))=0.dTaylorЪ
f(x)=f(x(k))+(x x(k))T f(x(k))+o( x x(k) )
,ePx x(k)=tkd(k),K÷vd(k) f(x(k))<0 d(k)´eü . tk ½ ,d(k) f(x(k))
T
,= d(k) f(x(k)) ,¼êeü ¯.dCauchy-SchwartzØ ª
(k)T d f(x(k)) ≤ d(k) f(x(k)) , …= d(k)= f(x(k)) ,d(k) f(x(k)) ,l ¡ f(x(k))´ eü .
eü{ S“ ª
x(k+1)=x(k) tk f(x(k)).
! eü{
eü{ g ´µ÷X8I¼ê3 cS“:? eü =KFÝ ?1 ‘
|¢§l # S“:" 8I¼ê3S“:? FÝ " þ C ½§Ý §T: (UNP) `Cq)"e¡‰Ñ eü{ äNS“Ú½"
TT
T