最优化理论与算法(6)
时间:2026-01-15
时间:2026-01-15
y² kyf ÛÜ4 : ´ Û :" x ´f ÛÜ4 :§K 3x + U(x )¦
f(x)≥f(x ), x∈U(x ).é?¿x∈Rn§ α>0¿© §x +α(x x )∈U(x ).df à5
f(x )≤f(x +α(x x ))≤αf(x)+(1 α)f(x ).
f(x )≤f(x)§=x ´f Û4 :"
eyx ´¯K(3.1.1) ) ¿ ^ ´ f(x )=0.Ï f´Rnþ à¼ê, f(x )=0, k
f(x) f(x )≥ f(x )(x x )=0, x∈D.ùL²x ´D¥f Û4 :.
§3.2 { Ú½9Âñ5
à å`z eü { Ä g µl, Щ:x(0)Ñu§ E: {x(k)}¦ f(xk+1)<f(x(k)),k=0,1,···. { 8I´: {x(k)}¥ , :½, 4 :´¯K(3.1.1) )½-½:"
!eü {
d(k)´f3x(k)? eü §
f(x(k))Td(k)<0.
K α>0¿© §f(x(k)+αd(k))<f(x(k)).Ïd x(k+1)=x(k)+αkd(k)§Ù¥αk>0¦ f(x(k)+αkd(k))<f(x(k)).
{3.2.1Ú1.‰½Ð©:x(0)∈Rn§°Ýε≥0"-k=0"
Ú2.e f(x(k)) ≤ε§Ê § )x(k)"ÄK=Ú3"Ú3.(½eü d(k)§¦
f(x(k))Td(k)<0.
Ú4.(½Ú αk>0§¦
f(x(k)+αkd(k))<f(x(k)).
Ú5.-x(k+1)=x(k)+αkd(k),k:=k+1§=Ú2"
5µÚ2¥ Ø ª f(x(k)) ≤ε { ª OK§Ù¥°Ýε â¢S¯K I (½" 3nØ©Û §þ ε=0"Ú4¥ αk¡ Ú "(½Ú ~^ {´ ‘ 5|¢"