最优化理论与算法(15)
时间:2026-01-15
时间:2026-01-15
{3.3.1( eü{)
Ú1.À½Ð©êâ"‰ÑЩ:x(0)∈Rn§°Ýëêε≥0"-k=0"
Ú2.ª O"¦ f(x(k))"e f(x(k)) ≤ε§Ê § x =x(k)§ÄK=3"Ú3. E|¢ "-d(k)= f(x(k))"
Ú4.?1 ‘|¢"¦minf(x(k)+td(k)) `Ú ½ ÉÚ tk"
t≥0
Ú5.(½# S“:"-x(k+1)=x(k)+tkd(k)§k:=k+1§=2"
53.3.2tk `Ú ½ ÉÚ § 3~êδ>0§¦
D=f(x(k)) f(x(k)+tkd(k))≥δ f(x(k))Td(k)
2
/ d(k) 2
(3.3.1)
é k¤á= "dþ ! §°( |¢!Armijo |¢9Wolfe–Powell |¢ Ú þ÷vþª"
53.3.3k § O B§ d(k)= α f(x(k))§Ù¥α>0´, ~ê"
~3.3.4^ eü{¦)Ã å 55y¯K
2
minf(x)=x21+2x2,x
‰½Ð©:x(0)
1=§°Ýëêε=0.1"
1
2x14x2
"
Äk§ f(x)=
1 gS“µ
√ 121
"§ f(x(0)) =2≥ε§ d(0)==2 f(x(0))=
224
1 t
§ (t)=f(x(0)+td(0))=(1 t)2+2(1 2t)2§ (t)= ‘|¢µx(0)+td(0)=
1 2t
2(1 t) 8(1 2t)= 10+18t"- (t)=0 (t) ²-:t0=5/9"du (t0)=18>0§Ïdt0=5/9´min (t)=f(x(0)+td(0)) `)"
t≥0
1 5/94/9
# S“:µx(1)=x(0)+t0d(0)=="
1 10/9 1/9
1 gS“µ
f(x(1))=
8/9 4/9
=49
√24
§ f(x(1)) =≥ε§ d(1)= 1
2
"1