最优化理论与算法(7)
时间:2026-01-15
时间:2026-01-15
! ‘|¢
‘|¢kü« ª§°( |¢Ú °( |¢"°( |¢ÏL¦) ‘ `z¯K
minf(x(k)+αd(k)) φ(α)
α>0
(3.2.1)
Ú αk§Kk
f(x(k)+αkd(k))Td(k)=0.
= αk=argminφ(α)=f(x(k)+αd(k))§ù αk¡ `Ú "ù« {Ø=U y÷veü^ § …3d þ¦eüþD=f(x(k)) f(x(k)+αkd(k)) § I O þ"Ù¢§3¢SO L§¥§duO Åi ÚO Ø Ï§nØþ `Ú ´¦Ø § ´ Cq `)"
éu g¼ê4 z¯K
minf(x)=
1T
xQx+qTx,2
α>0(k)
Ù¥Q∈Rn×né¡ ½" d(k) f3x(k)? eü §…÷v f(x(k))Td(k)<0"-φ(α)=f(x(k)+αd(k))
1
=(x(k)+αd(k))TQ(x(k)+αd(k))+qT(x(k)+αd(k))21
=α2d(k)TQd(k)+α f(x(k))Td(k)+f(x(k)),2
Kdφ (α)=0 `Ú
f(x(k))Td(k)
αk= .
dQd
(3.2.2)
°( |¢(½ Ú αk I÷vf(x(k)+αkd(k)) f(x(k))k ½§Ý eü= "=
αk>0§¦eüþD=f(x(k)) f(x(k+1)) É þ§ù αk¡ ÉÚ "ù« {Ø= y÷veü^ § … I O þ"¢ L²§ù« ‘|¢ { éÐ ê O J"
£ ¤°( |¢¨‘7© {£0.618{¤
‘7© {´(½°( |¢Ú « {§§·^u¦ ü¸¼ê 4 ¯K"kÚ?ü «m Vg"
½Â3.2.1 :[a,b]→R"e 3t ∈[a,b]§¦ (t)3[a,t ]þî 4~§3[t ,b]þî 4O§K¡[a,b]´ (t) ü «m"
w, (t)3Ùü «mþk 4 :t "y3y²ü «m ~k^ 5 "½n3.2.2 [a,b]´ (t) ü «m§λ,µ∈[a,b]§λ<µ"
£1¤e (λ)≤ (µ)§K[a,µ]´ (t) ü «m£2¤e (λ)> (µ)§K[λ,b]´ (t) ü «m"