最优化理论与算法(19)
时间:2026-01-15
时间:2026-01-15
Äk§ f(x)=
2x14x2
§ 2f(x)=
1
201/20
= ½§ 2f(x)"
0401/4
1 gS“µ
√21
f(x(0))==2§ f(x(0)) =2≥ε§d(0)= [ 2f(x(0))] 1 f(x(0))=
42
1/202 10 =§x(1)=x(0)+d(0)="
01/44 10
1 gS“µ
00
f(x1)=§ f(x(1)) =0<ε§ `)x =x(1)="
00
~3.4.2´ Ã åà g5y¯K§^Newton{¦) §²L gS“= °(
`)"Ù¢§éu à åà g5y¯K(UQP)§^Newton{¦) k Ó (ا=Newton{äk gª 5"
½Â3.4.1e {^u¦)î à g¼ê4 ¯K §l?¿Ð© Ñu§ {²Lk gS“ ¼ê 4 :§K¡T {äk gÂñ5"
3 ½^ e§eЩ:3 `)NC§KNewton{äk Âñ Ý"
½n3.4.3 f3x ∈Rn , S gëY §…x ÷v f(x )=0, 2f(x ) ½§K 3~êδ>0§¦
x(0)∈Uδ(x ) {x| x x <δ} §Úî{
x
(k+1)
(k)
=x f(x
2(k)
1) f(x(k)),
k=0,1,···
) : {x(k)} 5Âñux "e 2f3x ?LipschitzëY§= 3~êL>0§¦
2f(x) 2f(x ) ≤L x x ,
x∈Uδ(x ),
K{x(k)} gÂñux §= 3~êC>0§¦ k¿© §
x(k+1) x ≤C x(k) x 2.
y²df gëY ! 2f(x ) ½
δ1>0,¦ 2f(x) — ½, x∈Uδ1(x ),
M>0,¦ 2f(x) 1 ≤M, x∈Uδ1(x ),
1
, x∈Uδ(x ). δ≤δ1,¦ 2f(x) 2f(x ) ≤4M
x(0)∈Uδ(x ) §k
x(1) x = x(0) x 2f(x(0)) 1 f(x(0))