最优化理论与算法(4)
时间:2026-01-15
时间:2026-01-15
y²£2¤´£1¤ AÏ /§ y£1¤" f(x)Td<0"dTaylorЪ§ α>0¿© §
f(x+αd)=f(x)+α f(x)Td+o(α)<f(x),=d´f3x? eü "
n=1 §ex ´¯K(3.1.1) )§Kf (x )=0…f (x )≥0., ¡§ex ÷vf (x )=0,f (x )>0§Kx ´¯K(3.1.1) î ÛÜ4 :"þã^ í2 n>1 /"
!7 ^
½n3.1.2( 7 ^ ) f:D Rn→R3m8DþëY .ex ∈D´(3.1.1) ÛÜ4 :,K
f(x )=0.(3.1.2)y² x ´ ÛÜ4 :, ÄS
x(k)=x αk f(x ).
|^TaylorЪ,éu¿© k,k
0≤f(x(k)) f(x )= αk f(x )T f(ηk),
Ù¥ηk´x(k)Úx à|Ü.ü>ÓØ±αk,¿ 4 .duf∈C1, k
0≤ f(x ) 2.
w,,= f(x )=0 ,þª¤á.
½n3.1.3( 7 ^ ) f:D Rn→R3m8Dþ ëY ,ex ∈D´(3.1.1)
ÛÜ4 :,K
f(x )=0, 2f(x ) 0,(3.1.3)y² (3.1.3)¥1 ª3½n3.1.2¥®²y², Ly²1 ª. ÄS x(k)=x +αkd,
d?¿.duf∈C2Ú f(x )=0, dTaylorЪ,éu¿© k,k
0≤f(x(k)) f(x )=
12T2
αd f(ηk)d,2k
12
α,¿ 42k
Ù¥ηk´x(k)Úx à|Ü.dux ´ÛÜ4 :,f∈C2,Kþªü>ÓØ± ,
dT 2f(x )d≥0,
l (2.1.3)1 ª .
d∈Rn.