最优化理论与算法(20)
时间:2026-01-15
时间:2026-01-15
= 2f(x(0)) 1( f(x(0)) f(x ) 2f(x(0))(x(0) x )) ≤M f(x(0)) f(x ) 2f(x(0))(x(0) x )
1
≤M 2f(x +t(x(0) x )) 2f(x(0)) x(0) x dt≤M+≤
01
1
2f(x +t(x(0) x )) 2f(x ) x(0) x dt
(0)
f(x
2
) f(x) x
2 (0)
x dt
1(0)
x x .2
(3.4.2)
þªL²x(1)∈Uδ(x )§…é¤k k≥1k
x(k+1) x ≤
l §{x(k)}Âñux "? Ú§ k¿© § x
(k+1)
1(k)
x x .2
x ≤M
1
2f(x +t(x(k) x )) 2f(x(k)) x(k) x dt=o( x(k) x ),
={x(k)} 5Âñux "
e 2f3x ?LipschitzëY§K
1
x(k+1) x ≤M 2f(x +t(x(k) x )) 2f(x ) x(k) x dt
+
001
f(x
01
2(k)
) f(x) x
2 (k)
x dt
≤LM=
={x(k)} gÂñux "
tdt+1 x(k) x 2
3
LM x(k) x 2,2
5µéu à å 55y¯K(UNP)§^Newton{¦) §QØU y²Lk gS“ °( `)§ ØU yT {äkÂñ5§¿…d(3.4.1) Newton Ø ½´eü "
!{ZNewton{
ÑNewton{ØäkÂñ5 "€§E±Newton |¢ § ^ ` ‘|¢½ É ‘|¢(½Ú §ùÒ´{ZNewton{"e¡‰Ñ{ZNewton{ äNÚ½" {3.4.4£{ZNewton{¤
Ú1.À½Ð©êâ"‰½Ð©:x(0)∈Rn§°Ýëêε≥0"-k=0"Ú2.ª O"e f(x(k)) ≤ε§Ê § x =x(k)§ÄK=Ú3"