最优化理论与算法(11)
时间:2026-01-15
时间:2026-01-15
±y²§ed(k)´f3x(k)? eü … f(x(k))Td(k)<0§f3 {x(k)+αd(k)|α>0}þke.§K 3«m[a,b]§¦ [a,b]¥ ?Û:Ñ÷vWolfe–Powell. |¢^ (3.2.13)"
Wolfe–Powell. |¢'Armijo. |¢õ (3.2.13)¥ 1 ^ §Ù ^3u L Ú "¢yL§µ
£1¤UArmijo |¢(½Ð©:αk(0)(0)Pβk:=ρ 1αk"
(0)
(0)
=βρi¦ αk÷v(3.2.13)¥ 1 Ø ª"
(1)
(0)
(0)
(0)
£2¤eαkØ÷v(3.2.13)¥ 1 Ø ª§ ρ1∈(0,1)§-αk 8Ü{αk+ρi1(βk (0)
αk),i=0,1,···}¥¦ (3.2.13)¥1 Ø ª¤á "£3¤eαkØ÷v(3.2.13)¥ 1 Ø ª§-βk(ik)
αkÓ ÷v(3.2.13) ü Ø ª" {3.2.7£Wolfe–Powell. |¢¤
Ú1.eαk=1÷v(3.2.13)§K αk=1"ÄK=Ú2"
Ú2.‰½~êβ>0,ρ,ρ1∈(0,1)"-αk´8Ü{βρi,i=0,±1,±2,···}¥¦ (3.2.13)¥1 Ø ª¤á "-i=0"
Ú3.eαk÷v(3.2.13)¥1 Ø ª§Kª O §¿ Ú αk=αk"ÄK§-βk=(i)
ρ 1αk"=Ú4"
Ú4.-αk´8Ü{αk+ρi1(βk αk),i=0,1,···}¥¦ (3.2.13)¥1 Ø ª¤á "-i:=i+1§=Ú3"
n!Âñ5(J
e¡ïá {3.2.1 ÛÂñ5ÚÛÜÂñ5"^θkL«d(k) f KFÝ f(x(k)) Y §=
f(x(k))Td(k)
cosθk=.(3.2.14)
f(x) d
£ ¤ ÛÂñ5
½n3.2.8 f(x)ëY ke.§ fLipschitzëY§= 3L>0¦
f(x) f(y) ≤L x y ,
x,y∈Rn.
(i+1)
(i)
(i)
(i)
(i)
(i)
(i)
(0)
(1)
(1)
1
=ρ 1αk§-EdL§§ ,
(1)
{x(k)}d {3.2.1 )§Ù¥Ú αkd°( |¢(½"K
∞ i=0
f(x(k)) 2cos2θk<∞.
(3.2.15)
AO §e 3~êδ>0¦ cosθk≥δ§K
k→∞
lim f(x(k)) =0.
(3.2.16)