最优化理论与算法(3)
时间:2026-01-15
时间:2026-01-15
1nÙÃ å`z
â1 Ü© {nØÐÚ §3¦) 55y¯K L§¥§· I (½|¢ Ú|¢Ú "(½,:÷X, £ÄÚ ¡ ‘|¢ {"ØÓ |¢ (½ ØÓ {"
§3.1 `5^
x∈Rn
!ïÄà å¯K
minf(x),
(3.1.1)
`5^ ,§ ) ^ Ú ^ .
4 : a.kÛÜ4 :Ú Û4 :ü«.
AT Ñ,¢Sþ 1 ´¦ ÛÜ(½î ÛÜ)4 :, Û4 :. 5`¦ Û4 :´ (J ?Ö.3éõ¢SA^¥,¦ÛÜ4 :®÷v ¯K ¦.Ïd,± ¦4 :,Ï~´ ¦ÛÜ4 :.= ¯Käk,«à5 ,ÛÜ4 :â´ Û4 :.
f êÚ ê 3,…©OL«
g(x)= f(x),
!eü
½Â3.1.1 x,d∈Rn.e 3~êα¯>0¦
f(x+αd)<f(x),
α∈(0,α¯),G(x)= 2f(x).
K¡d´f3x:? eü "e d´f3x? eü §K¡d´f3x:? þ, "
eü Aۿµ :lx?Ñu§÷ d£Ä §f üN4~"e-φ(α)=f(x+αd),
Kd´f3x? eü duφ3 :?üNeü§ φ (0)<0"l k½n3.1.1 fëY … f(x)=0.
£1¤ed÷v f(x)Td<0§K§´f3x? eü "
£2¤eÝ H∈Rn×né¡ ½§K þd= H f(x)´f3x? eü "AO §d= f(x)´f3x? eü "