最优化理论与算法(5)
时间:2026-01-15
时间:2026-01-15
÷v f(x )=0 :x ¡ ¼êf -½:½7:.XJ f(x )=0,Kx U´4 :, U´4 :, UØ´4 :.QØ´4 : Ø´4 : -½: ‰¼ê Q:.Xx =0 f(x)=x2 4 :§ Ø´f(x)=x3 4 :"
n!¿©^
½n3.1.4( ¿©^ ) f:D Rn→R3m8Dþ ëY ,Kx ∈D´f î ÛÜ4 : ¿©^ ´
f(x )=0… 2f(x ) 0.(3.1.4)y² (3.1.4)¤á,KdTaylorЪ,é?¿ þd,
1
f(x +εd)=f(x )+ε2dT 2f(x +θεd)d.
2
du 2f(x ) ½,f∈C2, ÀJε,¦ x +εd∈Nδ(x ),l dT 2f(x +θεd)d>0,ù
f(x +εd)>f(x ),
=x ´î ÛÜ4 :.
4
5µ½n3.1.4 ^ Ø´7 ^ "~X§x =(0,0)T´f(x)=x41+x2 î ÛÜ4 :§ 2f(x )Ø ½"
~3.1.5|^4 ^ ¦)¯K
minf(x)=
) O µ
f(x)=
x21 2x1x22 1
,
2f(x)=
2x1 20
02x2
.
1313
x1+x2 x21 x2.33
d f(x)=0 -½:µ
0022
x(1)=,x(2)=,x(3)=,x(4)=,
1 11 1q
2f(x(3))=
x(3) 4 :"
/,8I¼ê -½:Ø ½´4 :. e8I¼ê´à¼ê,KÙ-½:Ò´Ù4
:,… Û4 :.
½n3.1.6(à¿©5½n) f:Rn→R´ëY à¼ê.Kf ÛÜ4 : ´Ù Û4 :"…x ´¯K(3.1.1) ) ¿©7 ^ ´ f(x )=0.
2002
,