最优化理论与算法(13)
时间:2026-01-15
时间:2026-01-15
Ù¥c1=(1 σ2)L 1"l d(3.2.13) 1 Ø ª
f(x
(k+1)
) f(x
(k)
( f(x(k))Td(k))2
)≤ σ1c1
d(k) 2= σ1c1 f(x(k)) 2cos2θk.
(3.2.19)
aqu½n3.2.8 (3.2.15).
½n3.2.10 ½n3.2.8 ^ ¤á§{x(k)}dæ^Armijo. |¢ {3.2.1 )§=αkd {3.2.5 )§2b 3~êC>0§¦
f(x(k)) ≤C d(k) .
K½n3.2.8 (ؤá"
y²Ñ"
3½n3.2.8–3.2.10 Ä:þ§e¡‰Ñeü {3.2.1 ÛÂñ ¿©^ "½n3.2.11 f(x)ëY ke.§ fLipschitzëY§= 3L>0¦
f(x) f(y) ≤L x y ,
x,y∈Rn.
(3.2.20)
{x(k)}d {3.2.1 )§Ù¥Ú αkd°( |¢(½§½dWolfe-Powell.|¢(½§½dArmijo. |¢(½§…(3.2.20)¤á"e 3~êη>0§¦
k 1 i=0
cosθi≥ηk,
(3.2.21)
K
liminf f(x(k)) =0.
k→∞
(3.2.22)
y² (3.2.22)ؤá§K 3~êε>0§¦ f(x(k)) ≥ε, k"d(3.2.15) § 3~
êM>0§¦ é¤kk>0k
ε
2k 1 i=0
cosθi≤
2
k 1 i=0
f(x(i)) 2cos2θi≤M.
þªüàÓØ±k§¿|^AÛØ ªÚ(3.2.21)
εη≤ε(
22
2k 1 i=0
cosθi)
21/k
≤ε
21
k 1 i=0
k
cos2θi≤
M
.k
-k→∞§ gñØ ªε2η2≤0"