最优化理论与算法(21)
时间:2026-01-15
时间:2026-01-15
Ú3. E|¢ "¦) 5 §| 2f(x(k))d= f(x(k)) d(k)"Ú4.?1 ‘|¢"¦minf(x(k)+td(k)) `Ú ½ ÉÚ tk"
t≥0
Ú5.(½# S“:"-x(k+1)=x(k)+tkd(k),k:=k+1§=Ú2"
53.4.53(½Ú tk §Q ^ `Ú § ^ ÉÚ § ¦ 3~êδ>0§¦
D=f(x(k)) f(x(k)+tkd(k))≥δ( f(x(k))Td(k))2/ d(k) 2,
f(x(k))Td(k)<0 §3 ½^ e(3.4.3)¤á"
e¡ïá{ZNewton{ ÛÂñ5½n"
½n3.4.6 f:Rn→R1 ëY ¿… —à§ 2f(x) k.§^{ZNewton{¦)(UNP)§Ù¥ε=0§¿… 3~êδ>0§¦ (3.4.3)é k¤á§
£1¤e )k S x(1),···,x(k)§K f(x(k))=0"£2¤e )Ã S x(1),x(2),···§Klim f(x(k)) =0"
k→∞
(3.4.3)
y²£1¤ â { ª O^ = "
£2¤ k=0,1,···" âf(x) —à § 3η>0§¦ 2f(x) A
λn( 2f(x))≥η,
Ïdé?¿ z∈Rn§d
zT 2f(x(k))z≥η z 2,
¿…d(k)
(3.4.4)
x∈Rn,
1= 2f(x(k)) f(x(k))´eü §S {f((k))}Âñ"é?¿ z∈Rn§d(3.4.4) §
η z 2≤zT 2f(x(k))z≤ z 2f(x(k))z ,
=
2f(x(k))z ≥η z .
3þª¥ z=d(k)
1
= 2f(x(k)) f(x(k))§K
f(x(k)) ≥η d(k) .
Ó § â 2f(x) k. § 3M>0§¦ 2f(x) <M§dd
f(x
(k)
(3.4.5)
) ≤ f(x
2(k)
1
2(k)
f(x(k)) ≤M d(k) ,) f(x)