最优化理论与算法(18)
时间:2026-01-15
时间:2026-01-15
Ù¥f(x) gëY "
x(k)´ cS“:§Kf(x)3x(k)? TaylorЪ
1
f(x)=f(x(k))+ f(x(k))T(x x(k))+(x x(k))T 2f(x(k))(x x(k))+o( (x x(k)) 2),
Ä g5y¯K
1
minf(x)= f(x(k))T(x x(k))+(x x(k))T 2f(x(k))(x x(k)),x2
2f(x(k)) ½ §þã¯K `)
1
x =x(k) 2f(x(k)) f(x(k)).
òx # S“:x(k+1)§
x(k+1)
eP
d(k)
K
x(k+1)=x(k)+d(k).
d(k)
1
= 2f(x(k)) f(x(k))¡ f(x)3x(k)? Newton "Ïd§Newton{Ò´±Newton
1
= 2f(x(k)) f(x(k)),
(3.4.1)
1=x(k) 2f(x(k)) f(x(k)).
|¢ §±1 Ú £={ü ‘|¢¤?1S“ {"e¡‰ÑNewton{ äNS“Ú
½"
{3.4.1£Newton{¤
Ú1.À½Ð©êâ"‰½Ð©:x(0)∈Rn§°Ýëêε≥0"-k=0"Ú2.ª O"e f(x(k)) ≤ε§Ê § x =x(k)§ÄK=Ú3"Ú3. E|¢ "¦) 5 §| 2f(x(k))d= f(x(k)) d(k)"Ú4.(½# S“:"-x(k+1)=x(k)+d(k),k:=k+1§=Ú2"
~3.4.2^Newton{¦)Ã å`z¯K
2
minf(x)=x21+2x2,x
‰½Ð©:x(0)
1
§°Ýëêε=10 6"=2