中考数学综合专题训练【二次函数压轴题】提升(2)
发布时间:2021-06-06
发布时间:2021-06-06
中考数学综合专题训练【二次函数压轴题】提升与解析
=PC+PH+6,
则C、P、H三点共线时,PC+PH最小,
∴此时P点的横坐标为3,把x=3代入y= 即P点坐标为(3,
129x,得到y=, 44
9
),此时PC+PH=5, 4
∴△PAC的周长的最小值=5+6=11.
【点评】本题考查了点在抛物线上,点的横纵坐标满足二次函数的解析式和顶点在原点的二次函数的解析式为:y=ax2;也考查了旋转的性质、勾股定理以及两点之间线段最短.本题第(3)小题的关键是将△PAC的周长转化为PC与PH和的关系,从而求出三角形周长的最小值.难度较大.
本题第(3)小题与2010年南通市28题的第(3
(2010江苏南通,28,14分)已知抛物线y=ax20)
两点,当x=3和x=-3时,这条抛物线上l与 x轴平行,O为坐标原点.
(1)求直线AB和这条抛物线的解析式;
(2)以A为圆心,AO为半径的圆记为⊙A由;
(3)设直线AB上的点D的横坐标为-1,P(m点,当△PDO的周长最小时,求四边形CODP的面积. (第28题)
3.已知抛物线:y=x2-2x+m-1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B.
(1)求m的值;
(2)过A作x轴的平行线,交抛物线于点C,求证△ABC是等腰直角三角形;
(3)将此抛物线向下平移4个单位后,得到抛物线C',且与x轴的左半轴交于E点,与y轴交于F点,如图,请在抛物线C'上求点P,使得△EFP是以EF为直角边的直角三角形.
【解题思路】(1)由抛物线与x轴只有一个交点,则b2-4ac=0,得出关于m的方程,求出m的值.(2)求出点A、B的坐标,得出OA=OB,再根据AC∥x轴,得出∠BAC=45°,根
上一篇:氩弧焊焊丝