【常考热点 拔高提分】备战2013高考 数学一轮复(11)
时间:2025-04-12
时间:2025-04-12
高考,数学,复习
∴sin 2α=2sin αcos α5254³, 555
41322
cos 2α=cosα-sinα-=
555
πππ41334+3 ∴sin 2α+=sin 2αcos+cos 2αsin=³³. 3 33525210 π 4π 11.已知:0<α<<β<π,cos β- =4 52 (1)求sin 2β的值; π (2)求cos α+的值.
4
ππ221 解:(1)法一:∵cos β-=cosβ+sin β=cos β+β=
4 4223 ∴cos β+sin β=
2271+sin 2β=sin 2β399
法二:sin 2β=cos
π-2β =2cos2 β-π-1=-7 4 9 2
π
(2)∵0<α<<β<π,
2
ππ3π3π∴<β<-π,<α+β<, 44422π ∴sin β->0,cos(α+β)<0.
4 π14 ∵cos β-=sin(α+β)= 4 35 π22 ∴sin β-=, 4 3
cos(α+β)=-.
π ∴cos α+=cos 4
π α+β- β-
4
3
5
π =cos(α+β)cos β 4 31422-3
.
535315
x x 12.(2012²衡阳模拟) 函数f(x)=cos -+sin π-,x∈R.
2 2 (1)求f(x)的最小正周期;