实变函数论课后答案第五章1(15)
时间:2026-01-17
时间:2026-01-17
实变函数论课后答案
证明:令sn(x) fn(x) fn(x),(n n0) ,则sn(x)非负可测,且sn 1(x) sn(x),
limsn(x) fn0(x) f(x),对sn(x)用Levi定理得lim sn(x)dx limsn(x)dx ,
n
n
EE
n
即
f
E
n0
(x)dx lim fn(x)dx (fn0(x) f(x))dx fn0(x)dx f(x)dx,
n
E
E
E
E
n
E
E
0 fn0(x)dx ,lim fn(x)dx f(x)dx成立.
E
反例:令E Rn可测,mE ,fn(x)
f1(x) fn(x) fn 1(x)
1
于E上,则n
fn(x) 0 f(x)于E 上,且 fn(x)dx mE , 于E上,limn
E
1n
f(x)dx 0 lim fn(x)dx
E
n
E
15.设f(x)是可测集E上的非负可测函数,如果对任意 m N,都有
m
[f(x)]dx f(x)dx E
E
则f(x)几乎处处等于一可测集合的示性函数.
证明:令E0 E,[x|f(x )0]E1 E[x|f(x) 1],E E[x|f(x) 1],
E[x|0 f(x) 1],则 E E E E E E01
由于f(x)非负可测,故[f(x)]m( m N)也非负可测,故由Fatou引理知
mE
E
f(x)]
m
m
dx f(x)]mdx [f(x)]mdx f(x)dx
Em
m
E
E
故mE 0,从而有
[f(x)]mdx [f(x)]mdx f(x)dx f(x)dx
E1
E
E1
E
而在E1上f(x) 1,故 f(x)dx [f(x)]mdx f(x)dx f(x)dx
E1
E
E1
E
由f 0,且 f(x)dx 知 f(x)dx ,故 [f(x)]mdx f(x)dx,
E
E1
E
E