提升高中数学概念教学有效性的策略研究(11)
时间:2026-01-14
时间:2026-01-14
【感悟】在概念形成后,如何让学生深入理解概念,在教学中,可以结合具体的事例诠释概念的内涵与外延。这里既可以设计“形似而神非”的个案来校正;也可以巧设“问题链”。在对“问题链”的辨析中,通过归纳、抽象、概括、提炼,循序渐进,步步紧逼,使学生的认识结构从“了解”上升到“理清并掌握”的层面,让学生经历着好奇、惊喜、迷惑、困顿,最后茅塞顿开,使学生体验一个‘自我否定’的过程,从而唤醒学生的悟性和灵感,以达到对数学概念真正的理解。
策略4:螺旋上升,内化概念
教师在平时教学中,要在挖掘新概念的内涵与外延的基础上,让学生理解并巩固概念。有些概念由于其内涵丰富、外延广泛等原因,很难一步到位,需要分成若干个层次,逐步加深提高。要通过概念间互相渗透,弄清概念间的内在联系和区别,通过概念间的灵活变通,培养学生灵活解决问题的能力。
【案例7】“曲线与方程”教学片断
在得出“曲线与方程”的关系后,如何进一步理解“曲线的方程”与“方程的曲线”这些概念的本质,进一步体验“数”与“形”的转化与结合的思想方法。为此,教学中使用下面的例子,设计问题启发学生思考,从正、反两方面认识一般
2例1 下列哪条曲线是方程x y的曲线?请说明理由。
例2 下列哪个方程是下图中曲线C(两条相交直线:第一、三象限的直角平分线,第二、四象限的直角平分线)的方程?请说明理由。
A.x y 0 B. x y 0
C. x3 x2 xy2 y2 0 D. x2 y2 0
【感悟】一个概念的形成往往是螺旋式上升的,逐步深化的,一般要经过具体到抽象,局部到整体,感性到理性的过程。教学中设计一些反例,让学生通过正、反例的对比辨析、鉴别真伪,从不同角度来认识定义文字所隐含的内容,从而达到“有比较才能鉴别,有鉴别才能深化认识”的学习效果。类似例1、例2这样带有反例的问题,其内容与学生的知识基础很接近,但又容易形成认识上的误区,具有一些思维上的挑战性,可能会给学生留下较深刻的印象。它们具有单纯正例所起不到的独特作用,教学中对此应予以关注,这对核心概念和重要思想方法的教学尤为重要。
上一篇:2021财务管理实训报告总结
下一篇:策划宣传册方案(共9篇)