生物信息学软件(4)
时间:2025-02-22
时间:2025-02-22
各种生物信息学软件都有
(3)启发式搜索算法挖掘疾病基因子网
2.生物学模块挖掘方法
(1)基于群体的概率学习方法挖掘microRNA–mRNA调控模块
(2)模块方法整合分析基因表达和药物反应数据
3.药物-靶挖掘方法
(1)整合化学结构与基因组序列信息预测药物-靶的互作网络
(2)药物-靶互作网络
三、R语言实现(8学时)
1.集成决策的方法 party可以用于递归划分计算工具包的核心是ctree(),条件推理树的实现是把基于树的回归模型嵌入到研究很好的条件推理过程理论。这个非参数的回归树可以应用于各种回归模型:包括名义上、顺序、数值的,检查以及多变量和协变量的任意度量。基于条件推论树,cforest()实现了Breiman的随机森林。mob()实现了基于参数模型(如线性模型,广义线性回归或生存分析)递归划分,该方法利用参数不稳定检验来检测划分选择。可以对基于树回归模型可视化。
2.SVM方法 e1075包中SVM是用来训练支持向量机的方法,它可用于一般回归和分类,还可以用于密度估计。
参考书目及文献:
1. Li X, Rao S, Wang Y, Gong B (2004) Gene mining: a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling. Nucleic Acids Res 32: 2685-2694.
2. Li L, JIang W, Li X, Moser KL, Guo Z, et al.(2005) A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset. Genomics 85:16-23.
3. Chuang HY, Lee E, Liu YT, Lee D, Ideker T (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3: 140.
4. Joung JG, Hwang KB, Nam JW, Kim SJ, Zhang BT (2007) Discovery of microRNA-mRNA modules via population-based probabilistic learning. Bioinformatics 23: 1141-1147.
5. Kutalik Z, Beckmann JS, Bergmann S (2008) A modular approach for integrative analysis of large-scale gene-expression and drug-response data. Nat Biotechnol 26: 531-539.
6. Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M (2008) Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24: i232-240.
7. Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M (2007) Drug-target network. Nat Biotechnol 25: 1119-1126.
8. Klipp E, Wade RC, Kummer U(2010) Biochemical network-based drug-target prediction. Curr Opin Biotechnol.
上一篇:高中英语重点词汇