2013年中考数学专题复习第二十四讲:与圆有关的(9)
时间:2025-07-13
时间:2025-07-13
1.(2012 恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
A.3cm B.4cm C.6cm D.
8cm
考点:切线的性质;勾股定理;垂径定理.分析:首先连接OC,AO,由切线的性质,可得OC⊥AB,由垂径定理可得AB=2AC,然后由勾股定理求得AC的长,继而可求得AB的长.解答:解:如图,连接OC,AO, ∵大圆的一条弦AB与小圆相切,
∴OC⊥AB,
∴AC=BC=1AB, 2
∵OA=5cm,OC=4cm,
在Rt△AOC中,
AC=
∴AB=2AC=6(cm).
故选C.
,
点评:此题考查了切线的性质、垂径定理以及勾股定理.此题难度不大,注意数形结合思想的应用,注意掌握辅助线的作法.
2.(2012 河南)如图,已知AB是⊙O的直径,AD切⊙O于点A,EC BC.则下列结论中不一定正确的是( )
A.BA⊥DA B.OC∥AE C.∠COE=2∠CAE D.OD⊥AC
考点:切线的性质;圆心角、弧、弦的关系;圆周角定理.分析:分别根据切线的性质、平行线的判定定理及圆周角定理对各选项进行逐一判断即可.
解答:解:∵AB是⊙O的直径,AD切⊙O于点A,
∴BA⊥DA,故A正确;
∵EC BC,
∴∠EAC=∠CAB,
∵OA=OC,
∴∠CAB=∠ACO,
∴∠EAC=∠ACO,