2013年中考数学专题复习第二十四讲:与圆有关的(11)
时间:2025-07-13
时间:2025-07-13
点评:本题考查了切线的性质,圆周角定理以及解直角三角形的有关知识,解题的关键是由题意可知当P和D重合时,∠APB的度数最大为90°.
4.(2012 乐山)⊙O1的半径为3厘米,⊙O2的半径为2厘米,圆心距O1O2=5厘米,这两圆的位置关系是( ) A.内含 B.内切 C.相交 D.外切
考点:圆与圆的位置关系.
分析:由⊙O1的半径为3厘米,⊙O2的半径为2厘米,圆心距O1O2=5厘米,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.
解答:解:∵⊙O1的半径r=3,⊙O2的半径r=2,
∴3+2=5,
∵两圆的圆心距为O1O2=5,
∴两圆的位置关系是外切.
故选D.
点评:此题考查了圆与圆的位置关系.解题的关键是熟记两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.
6.(2012 上海)如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是( )
A.外离 B.相切 C.相交 D.内含
考点:圆与圆的位置关系.
分析:由两个圆的半径分别为6和2,圆心距为3,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.
解答:解:∵两个圆的半径分别为6和2,圆心距为3,
又∵6-2=4,4>3,
∴这两个圆的位置关系是内含.
故选:D.
点评:此题考查了圆与圆的位置关系.此题比较简单,解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.
7.(2012 宿迁)若⊙O1,⊙O2的半径分别是r1=2,r2=4,圆心距d=5,则这两个圆的位置关系是( )
A.内切 B.相交 C.外切 D.外离
考点:圆与圆的位置关系.
分析:先求出两圆半径的和与差,再与圆心距进行比较,确定两圆的位置关系.
解答:解:∵⊙O1和⊙O2的半径分别是2和4,圆心距d是5,
则4-2=2,4+2=6,d=5,
∴2<d<6,
两圆相交时,圆心距的长度在两圆的半径的差与和之间,
∴两圆相交.
故选B.
点评:此题考查了圆与圆的位置关系.注意外离,则P>R+r;外切,则P=R+r;相交,则R-r<P<R+r;内切,则P=R-r;内含,则P<R-r.(P表示圆心距,R,r分别表示两圆的半径).