2013年中考数学专题复习第二十四讲:与圆有关的(7)
时间:2025-07-13
时间:2025-07-13
∴∠OCB=30°,
∴∠BOC=120°,
∴ BC 的长为nπr 180 =120×π×3 180 =2π,
故选B.
点评:本题考查了切线的性质、弧长公式,解题的关键是连接OB,构造直角三角形.
4.(2012 潍坊)已知两圆半径r1、r2分别是方程x2-7x+10=0的两根,两圆的圆心距为7,则两圆的位置关系是( ) A.相交 B.内切 C.外切 D.外离
考点:圆与圆的位置关系;解一元二次方程-因式分解法.
分析:首先解方程x2-7x+10=0,求得两圆半径r1、r2的值,又由两圆的圆心距为7,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.
解答:解:∵x2-7x+10=0,
∴(x-2)(x-5)=0,
∴x1=2,x2=5,
即两圆半径r1、r2分别是2,5,
∵2+5=7,两圆的圆心距为7,
∴两圆的位置关系是外切.
故选C.
点评:此题考查了圆与圆的位置关系与一元二次方程的解法.此题比较简单,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.
5.(2012 济南)如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是
5.48
48考点:切线的性质;勾股定理;矩形的性质.
分析:首先取AC的中点O,过点O作MN∥EF,PQ∥EH,由题意可得PQ⊥EF,PQ⊥GH,MN⊥EH,MN⊥FG,PL,KN,OM,OQ分别是各半圆的半径,OL,OK是△ABC的中位线,又由在Rt△ABC中,∠B=90°,AB=6,BC=8,即可求得个线段长,继而求得答案.
解答:解:取AC的中点O,过点O作MN∥EF,PQ∥EH,
∵四边形EFGH是矩形,
∴EH∥PQ∥FG,EF∥MN∥GH,∠E=∠H=90°,
∴PQ⊥EF,PQ⊥GH,MN⊥EH,MN⊥FG,
∵AB∥EF,BC∥FG,
∴AB∥MN∥GH,BC∥PQ∥FG,