立体几何题型与方法(理科)

时间:2025-07-12

立体几何题型与方法(理科)

1.平面

平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上。

(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。

(3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线.

(1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点

[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等)

②直线在平面外,指的位置关系是平行或相交

③若直线a、b异面,a平行于平面 ,b与 的关系是相交、平行、在平面 内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.

⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点向这个平面所引的垂线段和..

斜线段)

⑦a,b是夹在两平行平面间的线段,若a b,则a,b的位置关系为相交或平行或异面.

⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在

任何一个平面内的两条直线)

(2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角 [0,90])

(向量与向量所成角 [0 ,180 ])

推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.

(3). 两异面直线的距离:公垂线段的长度.

空间两条直线垂直的情况:相交(共面)垂直和异面垂直.

[注]:l1,l2是异面直线,则过l1,l2外一点P,过点P且与l1,l2都平行平面有一个或没有,但与l

1,l2距离相等的

立体几何题型与方法(理科).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219