2013年普通高考数学科一轮复习精品学案 第33讲
时间:2025-07-09
时间:2025-07-09
高考数学复习
2013年普通高考数学科一轮复习精品学案
第33讲 圆锥曲线方程及性质
一.课标要求:
1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用; 2.经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;
3.了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。
二.命题走向
本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,从近十年高考试题看主要考察圆锥曲线的概念和性质。圆锥曲线在高考试题中占有稳定的较大的比例,且选择题、填空题和解答题都涉及到,客观题主要考察圆锥曲线的基本概念、标准方程及几何性质等基础知识和处理有关问题的基本技能、基本方法。
对于本讲内容来讲,预测2013年:
(1)1至2道考察圆锥曲线概念和性质客观题,主要是求值问题;
(2)可能会考察圆锥曲线在实际问题里面的应用,结合三种形式的圆锥曲线的定义。
三.要点精讲
1.椭圆 (1)椭圆概念
平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫椭圆的焦距。若M为椭圆上任意一点,则有
|MF1| |MF2| 2a。
椭圆的标准方程为:
xa
22
yb
22
1(a b 0)(焦点在x轴上)或
ya
22
xb
22
1
(a b 0)(焦点在y轴上)。
222注:①以上方程中a,b的大小a b 0,其中c a b;
②在
xa
22
yb
22
1和
ya
22
xb
22
1两个方程中都有a b 0的条件,要分清焦点的位置,