2014年高考理科数学真题解析分类汇编:函数(4)
发布时间:2021-06-06
发布时间:2021-06-06
则g(x)不可能恒为正,也不可能恒为负. 故g(x)在区间(0,x0)内存在零点x1. 同理g(x)在区间(x0,1)内存在零点x2. 故g(x)在区间(0,1)内至少有两个零点.
1
由(1)知,当a≤时,g(x)在[0,1]上单调递增,故g(x)在(0,1)内至多有一个零点;
2e
当a≥g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点,都不合题意.
21e<a<.
22
此时g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增. 因此x1∈(0,ln(2a)],x2∈(ln(2a),1),必有 g(0)=1-b>0,g(1)=e-2a-b>0. 由f(1)=0得a+b=e-1<2,
则g(0)=a-e+2>0,g(1)=1-a>0, 解得e-2<a<1.
当e-2<a<1时,g(x)在区间[0,1]内有最小值g(ln(2a)). 若g(ln(2a))≥0,则g(x)≥0(x∈[0,1]),
从而f(x)在区间[0,1]内单调递增,这与f(0)=f(1)=0矛盾,所以g(ln(2a))<0. 又g(0)=a-e+2>0,g(1)=1-a>0.
故此时g(x)在(0,ln(2a))和(ln(2a),1)内各只有一个零点x1和x2.
由此可知f(x)在[0,x1]上单调递增,在(x1,x2)上单调递减,在[x2,1]上单调递增. 所以f(x1)>f(0)=0,f(x2)<f(1)=0, 故f(x)在(x1,x2)内有零点.
综上可知,a的取值范围是(e-2,1).
B4 函数的奇偶性与周期性
2 x+1,x>0,
7.、、[2014·福建卷] 已知函数f(x)= 则下列结论正确的是( )
cos x, x≤0,
A.f(x)是偶函数
B.f(x)是增函数 C.f(x)是周期函数
D.f(x)的值域为[-1,+∞)
7.D [解析] 由函数f(x)的解析式知,f(1)=2,f(-1)=cos(-1)=cos 1,f(1)≠f(-1),则f(x)不是偶函数;
当x>0时,令f(x)=x2+1,则f(x)在区间(0,+∞)上是增函数,且函数值f(x)>1;
当x≤0时,f(x)=cos x,则f(x)在区间(-∞,0]上不是单调函数,且函数值f(x)∈[-1,1]; ∴函数f(x)不是单调函数,也不是周期函数,其值域为[-1,+∞). 3.[2014·湖南卷] 已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=( )
A.-3 B.-1 C.1 D.3
3.C [解析] 因为f(x)是偶函数,g(x)是奇函数,
所以f(1)+g(1)=f(-1)-g(-1)=(-1)3+(-1)2+1=1. 3.[2014·新课标全国卷Ⅰ] 设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,
上一篇:实践活动的日程安排表