新人教版八年级数学上册期中考试知识点汇总及(13)
时间:2025-06-14
时间:2025-06-14
内容齐全,备有两套期中模拟试卷并附答案
第二章 特殊三角形
复习总目
1、掌握等腰三角形的性质及判定定理 2、了解直角三角形的基本性质 2、掌握勾股定理的计算方法
知识点概要
1、图形的轴对称性质:对称轴垂直平分连接两个对称点的线段;成轴对称的两个图形是全等图形
2、等腰三角形的性质
(1)等腰三角形的性质定理及推论:
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。 3、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。 (2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。 三角形中位线定理的作用: 位置关系:可以证明两条直线平行。 数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。 结论2:三条中位线将原三角形分割成四个全等的三角形。 结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。 结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。 4、直角三角形的性质 (1)直角三角形的两个锐角互余
上一篇:第四章学习道德理论注重道德实践
下一篇:如何走上微博营销的成功之路