《应用型本科线性代数及其应用》习题参考解答(17)
时间:2025-05-10
时间:2025-05-10
201
故B A E 030
102
19、已知矩阵A满足A2 A 2E,证明A,A 2E均可逆;并求A 1,(A 2E)。 证明:(
1
AEAE )A E,故A可逆,且A 1 。 2222
AE2
)。 22
A2 A 2E,故A 2E可逆,且(A 2E) 1 (A 1)2 (
k
20、设A 0,其中A为方阵,k为大于1的正整数,证明:
(E A) 1 E A A2 Ak 1
证明:(E A)(E A A A故(E A)
1
2
k 1
) E Ak E
E A A2 Ak 1。
21、若A为可逆矩阵,并且AB BA,试证:A 1B BA 1。 证明:A(AB) A(BA),(AA)B (AB)A,B (AB)A 从而 BA
1 1
1
1
1
1
(A 1B)(AA 1) A 1B。
*
22、若三阶矩阵A的伴随矩阵为A,且A 解:(3A)
1
1 1*
,求(3A) 2A。 2
2A*
1 112
A 2AA 1 A 1 A 1 ( )A 1 333
28116
( )3A 1
327A27
23、已知
11 2
A 3 12
1 10
设f(x) x 2x 1,求f(A)。
2
2 3 2 f(A) 13 3解:
34 2
下一篇:高中地理口诀