高三数学寒假作业冲刺培训班之历年真题汇编复(18)

时间:2025-04-21

(1)求椭圆C的离心率

(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.

【分析】(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;

(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB 与圆x2+y2=2相切.

【解答】解:(1)由x2+2y2=4,得椭圆C的标准方程为.

∴a2=4,b2=2,从而c2=a2﹣b2=2.

因此a=2,c=.

故椭圆C的离心率e=;

(2)直线AB与圆x2+y2=2相切.

证明如下:

设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.

∵OA⊥OB,

∴,即tx0+2y0=0,解得.

当x0=t时,,代入椭圆C的方程,得.

故直线AB的方程为x=,圆心O到直线AB的距离d=.

此时直线AB与圆x2+y2=2相切.

当x0≠t时,直线AB的方程为,

即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0.

圆心O到直线AB的距离d=.

高三数学寒假作业冲刺培训班之历年真题汇编复(18).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219