高三数学寒假作业冲刺培训班之历年真题汇编复(4)
时间:2025-04-21
时间:2025-04-21
(1)求证:f(x)≤0;
(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.
19.(14分)已知椭圆C:x2+2y2=4,
(1)求椭圆C的离心率
(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.
20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,
(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;
(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;
(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).
高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)
参考答案与试题解析
(5分)下列函数中,在区间(0,+∞)上为增函数的是()
A.y=
B.y=(x﹣1)2
C.y=2﹣x
D.y=log0.5(x+1)
【分析】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【解答】解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,
由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,
由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,
由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,
故选:A.
【点评】本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题.