平面几何小册子(8)
时间:2025-04-20
时间:2025-04-20
叶中豪、冯祖鸣、闵飞三人通信。非常值得一看,尤其是数学竞赛的同学。
其中等号成立的充要条件也可表述为三角形式:“当且仅当cos A = 2sinBsinC时”。
叶中豪06-05-17
附件:3.doc(24KB);06051701.gsp(5KB)
【From:冯祖鸣<zfeng@exeter.edu> RE: ?????? Wed, 17 May 2006 09:09:35 -0400】
This is the prolbem I am using:
Let $ABC$ be a triangle. Points $P$ and $Q$ are constructed outside of the triangle with $AP = AB$ and $AQ = AC$ and $\ang BAP = \ang CAQ$. Segments $BQ$ and $CP$ meet at $R$. Let $O$ be the circumcenter of triangle $BCR$. Prove that $AO \perp PQ$.
I think you just gave me too options, I do not need to use 120 degree version. But relate my thanks to Ming Fei.
Zuming Feng PEA
【To:冯祖鸣<zfeng@exeter.edu>
命题:
“如下图,设D是BC上任意一点。O1、O2分别是△ABD、△ACD的外心。DO1交⊙O2于E,DO2交⊙O1于F。求证:A、O1、O2、E、F五点共圆。” (06051702.gsp)
回复: Thu, 18 May 2006 11:52:40 +0800 (CST)】
回家后一想,发觉Salmon定理推广中的七点共圆结论乃是平凡的, X、Y两点在圆上也很易说明。可改述为如下简化
注意到B、O、F;C、O、E分别共线,还可叙述为:
“如下图,设D是BC上任意一点。O、O1、O2分别是△ABC、△ABD、△ACD的外心。直线DO1与CO交于E,直线DO2与BO交于F。求证:A、O、O1、O2、E、F六点共圆。”
叶中豪、冯祖鸣、闵飞三人通信。非常值得一看,尤其是数学竞赛的同学。
C
这两题都可直接从角度关系导出,不适宜作赛题。
昨天所编一题中,后来一想, R≤2r其实是显然的,只要知道所共圆经过外心O即可(不过题中并没有直接告诉,而需靠解题者自己去发觉;Salmon
定理并不广为熟知)。这题好在等号成立的条件并不明显,这才是本题精彩的部分。
AD取外接圆切线其实也不必要,对任意Ceva线结论也一样。只要将固定点P取在BC的中垂线上,就可作出类似的共轴圆系。等号成立的条件是AD⊥BC(06051701.gsp)
今晚上探索的成果并不如想象中丰盛,只得到两三个结果,不过最后一个很是令人惊奇。 第一个结果是:
“如下图,作AD的垂线AE,交BC边的中垂线于E,延长AD,交平行于BC的切线于F,记EF的中点为L。则E、L皆在Salmon圆上,且L恰是弧O1O2的中点。” (06051703.gsp)
叶中豪、冯祖鸣、闵飞三人通信。非常值得一看,尤其是数学竞赛的同学。
这个结果说明了当BC边平移时,前述轨迹Ω为何不发生变化。 第二个结果是从退化的轨迹总结而得到的:
“如下图,设△ABC的AB、BC两边与某椭圆相切,且BC平行于椭圆的长轴。A、C两点在以椭圆长轴为直径的圆上。则△ABC的外心O到BC边的距离等于椭圆短轴的四分之一。” (06051704.gsp)
第三个结果是今天所有结论中最漂亮的:
“△ABC中,设O′是AD所对应的Salmon圆的圆心。求证: (1)O′D⊥BC的充要条件是:AD恰好经过△ABC的九点圆心!
叶中豪、冯祖鸣、闵飞三人通信。非常值得一看,尤其是数学竞赛的同学。
BC
(2)记△ABC的九点圆心为Ni 。作O′E⊥BC,垂足为E。则Ni E∥AD!”
BC
(06051705.gsp)
叶中豪06-05-17
附件:4.doc(59KB);06051701.gsp(9KB);06051702.gsp(10KB);06051703.gsp(5KB);06051704.gsp(8KB);
06051705.gsp(9KB)
【From:冯祖鸣<zfeng@exeter.edu> solution Wed, 17 May 2006 22:49:01 -0400】
Hi, I look at your new 90 degree version (tangent to circumcircle at $A$), show that R <= 2r. i find it very simple: Easy to see that triangle $ABO$ is similar to triangle $ADO_2$, so triangle $AOO_2$ is similar to triangle $ABD$. 2R\sin C = AB = 2\sin C AO, 2r\sin D = AO;
so R/r = 2\sin D <= 2, equality with D = 90\dg; that is AD\perp BC.
Zuming Feng PEA
【From:冯祖鸣<zfeng@exeter.edu> RE: ??: Thu, 18 May 2006 12:29:12 -0400】
I have a question:
In a lecture or a small test, can I use Ming Fei's problems? Can you ask for me? He can still submit his problems to
叶中豪、冯祖鸣、闵飞三人通信。非常值得一看,尤其是数学竞赛的同学。
magazines, and so on. I am not sure about the such rules in China.
What I usually do is the following: If I will write a book collecting these problems, I will put the original authors on (this seems not true in many Chinese MO books). But when I gave lectures to students, sometimes I put it on the hand-outs, sometimes not. But I do tell the audience the original author. If I put it on a practice test (not the big ones like USAMO, or USA team selection test), I will not attach the name -- just problems on the test.
Zuming Feng PEA
【To:冯祖鸣<zfeng@exeter.edu> 回复: Fri, 19 May 2006 09:20:12 +0800 (CST)】
我已去邮件征求闵飞的意见。
R≤2r一题果如你说的,很是无聊。有时编题的思路是曲折的,但得到的结论却是平凡的。我常常碰到这样的事,类似“竹篮打水”。不过偶能找到满意的结论,也就令人欣慰了。如前天得到的涉及九点圆心的那个结论就较有意思,现已找到简单的证明,并不很难。叶中豪06-05-19
【From:冯祖鸣<zfeng@exeter.edu> RE: ??: Thu, 18 May 2006 21:33:10 -0400】
Can you show me the proof.