狄拉克方程(7)

时间:2025-06-23

狄拉克方程

环不是可逆的,热量总是从高温向低温处流动。所以:

这里T代表当系统和热源有热接触时系统的温度。

然而,如果循环是可逆的,系统总是趋向平衡,所以系统的温度一定要和它接触的热源一致。在这种情况下,我们可以用T代替所有的Tj,在这种特定情况下,一个可逆循环可以持续输送热,

(可逆循环)

这时,对整个循环进行积分,T是系统所有步骤的温度。

熵作为状态函数

现在,不仅仅在循环中,而是从任何热力学过程中我们可以从熵的变化推断出一个重要的结论。首先,想像一个可逆过程,如果将系统从一个平衡状态A转移到另一个平衡状态B。假如再经过一个任何可逆过程将系统带回状态A,结果是熵的绝对变化等于零。这意味着在第一个过程中,熵的变化仅仅取决于初始与终结状态.由此我们可以定义一个系统的任何平衡状态的熵。选择一个参照状态R,定义它的熵为SR,任何平衡状态X的熵为:

因为这个积分式与热转移过程无关,所以可以作为熵的定义。

现在考虑不可逆过程,很明显,在两个平衡状态之间热传递造成熵的改变为:

如果过程是可逆的,此公式仍然有效。

注意,如果dQ = 0,那么 ΔS ≥ 0。热力学第二定律的一种表述方式正是:一个绝热系统的全部熵不会自动减少。

设想一个绝热系统但和环境保持机械联系,和环境之间不是处于机械平衡状态,

狄拉克方程(7).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219