Topic segmentation with an aspect hidden Markov model(7)
时间:2025-07-02
时间:2025-07-02
We present a novel probabilistic method for partially unsupervised topic segmentation on unstructured text. Previous approaches to this problem utilize the hidden Markov model framework (HMM). The HMM treats a document as mutually independent sets of words
44ASPECTHMMSEGMENTATION
,maximizetheloglikelihoodofthetrainingdatawithrespecttotheparameters
,and.TheE-stepis
whereisthenumberoftimeswordappearsindocument.
Toavoidover ttingthetrainingdata,weusetemperedEMasdescribedin[5].Essentially,weholdoutaportionofourtrainingdataforcrossvalidationpurposesaftertheE-step.Whentheperformancedecreasesonthehold-outdata,wereduceaparameterwhichtemperstheeffectofthenextM-stepontheparametersofthemodel.InthecaseofasegmentingAHMM,wecrossvalidatebycheckingthesegmentationaccuracyonaheldoutsetoftranscriptsasmeasuredbytheCoAP(seesection5.3).Westoptrainingwhenreducingnolongerimprovesperformanceonthesegmentationofthehold-outtrainingdata.
4.2TheaspectHMM
ThesegmentingAHMMisanHMMforwhichthehiddentopicstateistherandomvariableinatrainedaspectmodel.Thisisdepictedin gure2.Generatively,theAHMMworksinexactlythesamewayastheHMMexceptthewordsfromtheselectedhiddenfactoraregeneratedviatheaspectmodelratherthanindependentlygenerated.TotrainanAHMM,wetrainanaspectmodelonasetoftrainingsegmentsasdescribedinsection4.1.Weclusterthetrainingsegmentsbytheparameter.
cluster
Finally,wecomputetransitionprobabilitiesbetweenclustersandinitialprobabilitiesofeachcluster.
Notethattheaspectmodeldoesnotrepresentclustersinthewaythatwecomputethem.Eachisrepresentedby,aprobabilityforeachlatentfactor.Thereisnotheoreticalreasonthatthefactorwithmaximumprobabilityshouldindicateacluster
上一篇:工程索道与柔性吊桥
下一篇:人教版六年级数学上册期末试卷2