Topic segmentation with an aspect hidden Markov model(7)

时间:2025-07-02

We present a novel probabilistic method for partially unsupervised topic segmentation on unstructured text. Previous approaches to this problem utilize the hidden Markov model framework (HMM). The HMM treats a document as mutually independent sets of words

44ASPECTHMMSEGMENTATION

,maximizetheloglikelihoodofthetrainingdatawithrespecttotheparameters

,and.TheE-stepis

whereisthenumberoftimeswordappearsindocument.

Toavoidover ttingthetrainingdata,weusetemperedEMasdescribedin[5].Essentially,weholdoutaportionofourtrainingdataforcrossvalidationpurposesaftertheE-step.Whentheperformancedecreasesonthehold-outdata,wereduceaparameterwhichtemperstheeffectofthenextM-stepontheparametersofthemodel.InthecaseofasegmentingAHMM,wecrossvalidatebycheckingthesegmentationaccuracyonaheldoutsetoftranscriptsasmeasuredbytheCoAP(seesection5.3).Westoptrainingwhenreducingnolongerimprovesperformanceonthesegmentationofthehold-outtrainingdata.

4.2TheaspectHMM

ThesegmentingAHMMisanHMMforwhichthehiddentopicstateistherandomvariableinatrainedaspectmodel.Thisisdepictedin gure2.Generatively,theAHMMworksinexactlythesamewayastheHMMexceptthewordsfromtheselectedhiddenfactoraregeneratedviatheaspectmodelratherthanindependentlygenerated.TotrainanAHMM,wetrainanaspectmodelonasetoftrainingsegmentsasdescribedinsection4.1.Weclusterthetrainingsegmentsbytheparameter.

cluster

Finally,wecomputetransitionprobabilitiesbetweenclustersandinitialprobabilitiesofeachcluster.

Notethattheaspectmodeldoesnotrepresentclustersinthewaythatwecomputethem.Eachisrepresentedby,aprobabilityforeachlatentfactor.Thereisnotheoreticalreasonthatthefactorwithmaximumprobabilityshouldindicateacluster

Topic segmentation with an aspect hidden Markov model(7).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219