Topic segmentation with an aspect hidden Markov model(6)

时间:2025-04-27

We present a novel probabilistic method for partially unsupervised topic segmentation on unstructured text. Previous approaches to this problem utilize the hidden Markov model framework (HMM). The HMM treats a document as mutually independent sets of words

3

ThismodelisaneffectivesegmentationframeworkonbothcleanandASRtext.However,itsuffersfromthenaiveBayesassumptionthatthewordswithineachobser-vationaremutuallyindependentgivenatopic.

Asgetslarge,thisassumptionworkswellforcomputing.However,thelargerbecomes,thelessprecisetheresultingsegmentationwillbesincethemodelcanonlyhypothesizetopicbreaksbetweensetsofwords.Thewindow(i.e.)mustbelargeenoughtogiveanaccurateestimateofwhilesmallenoughtodetectasegmentationpointwithgoodgranularity.

4AspectHMMSegmentation

AsegmentingaspectHMM(AHMM)isahiddenMarkovmodelinwhicheachhiddenstateisaninstanceofthelatentvariableinanembeddedaspectmodel.Thisaspectmodeldeterminesboththeobservationemissionprobabilitiesandtrainingsegmentclustersto ndthetransitionprobabilities.AsinthesegmentingHMM,eachobserva-tionisasetofwordsandweusetheViterbialgorithmto ndtopicbreaks.

4.1Theaspectmodelfordocumentsandwords

Inthissectionwesummarizetheaspectmodelasitappliestotext.Foradetaileddiscussion,see[5].

Theaspectmodelisafamilyofprobabilitydistributionsoverapairofdiscreterandomvariables.Intextdata,thispairconsistsofadocumentlabelandaword.Itisimportanttounderstandthatintheaspectmodel,adocumentisnotrepresentedasthesetofitswordsbutsimplyalabelwhichidenti esit.Itisassociatedwithitscorrespondingsetofwordsthrougheachdocument-wordpair.

Thismodelpositsthattheoccurrenceofadocumentandawordareindependentofeachothergivenatopicorfactor.Letdenoteasegmentfromapresegmentedcorpus,denoteaword,anddenoteatopic.Underthisindependenceassumption,thejointprobabilityofgeneratingaparticulartopic,word,andsegmentlabelis

Theparameterisalanguagemodelconditionedonthehiddenfactor.Theparameterisaprobabilitydistributionoverthetrainingsegmentlabels.Thedistributionisathepriordistributiononthehiddenfactor.

Givenacorpusofsegmentsandthewordswithinthosesegments,thetrainingdataforanaspectmodelisthesetofpairsforeachsegmentlabelandeachwordinthosesegments.WecanusetheExpectationMaximization(EM)algorithm[2]tolearnsuchamodelfromanuncategorizedcorpus.IntheE-step,wecomputetheposteriorprobabilityofthehiddenvariablegivenourcurrentmodel.IntheM-step,we

…… 此处隐藏:342字,全部文档内容请下载后查看。喜欢就下载吧 ……
Topic segmentation with an aspect hidden Markov model(6).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219