Topic segmentation with an aspect hidden Markov model(11)

时间:2025-04-27

We present a novel probabilistic method for partially unsupervised topic segmentation on unstructured text. Previous approaches to this problem utilize the hidden Markov model framework (HMM). The HMM treats a document as mutually independent sets of words

85EXPERIMENTALRESULTS

IABACDECFAGFHJ

1234567891011121314151617

Figure4:AsegmentationofAllThingsConsideredfromApril29,1999.Thetopdiagramisthehypothesissegmentation.Thebottomdiagramisthetruesegmentation.Figure4showsasegmentationfromarealtranscriptofATConApril29,1999.Thesegmentationisnotperfectbuthypothesizesthedetectedtopicbreaksatapproximatelythecorrectpointsintheprogram.At rst,thereseemtobemanymissedbreaks.Wearguehoweverthatthesemissedstorybreaksdonotalwaysconstitutetopicbreaksandthereforearenotindicativeoftheperformanceofourmodel.Toillustratethis,weexploreamethodoftopiclabelingbasedonthelanguagemodelparametersoftheaspectmodel.

Onewayofidentifyingthetopicswhichthesegmenter ndsisbythetop fteen

parameterforthevalueofwhichtheViterbialgorithmassignedwordsofthe

toaparticularsegment.Figure5liststhesewordsets(denotedbyaletter)astheycorrespondtothetopicsinthesegmentation(denotedbyanumber).Forexample,story14isabouttheIsraeli/Palestiniancon ict.Itscorrespondingsegmentinthehy-pothesissegmentationcanbedescribedbythewordsintopicFwhichincludepeace,israeli,andpalestinian.

Analysisofthiscorrespondenceoftenexplainsmissedtopicbreaks.Articles11and12arebothabouttheKosovarrefugees.Understandably,theyarebothassignedtotopicAandthebreakbetweenstoriesgoesundetected.

Notethatthesegmentercanworkevenifthetopwordsoffailtogiveagoodtopicdescription.ThestoryaboutdeformedfrogsisassignedtopicI,arathergenericlanguagemodelwithnorealdescriptivewords.However,thesubsequentstoryabouttheeconomy tstopicJsowellthattheAHMMisabletoproperlydetectthebreak.

Topic segmentation with an aspect hidden Markov model(11).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219