Topic segmentation with an aspect hidden Markov model(8)

时间:2025-04-27

We present a novel probabilistic method for partially unsupervised topic segmentation on unstructured text. Previous approaches to this problem utilize the hidden Markov model framework (HMM). The HMM treats a document as mutually independent sets of words

4.2TheaspectHMM5

Figure2:AgraphicalmodelrepresentingasegmentingAHMM

assignment.However,inpractice,fora xedispeakedtowardsonevalueof.Inthiscase,wefeeljusti edinassigningeachsegmenttothefactorwithmaximalprobability.

TheAHMMsegmentsanewdocumentbydividingitswordsintoobservationwin-dowsofsizeandrunningtheViterbialgorithmto ndthemostlikelysequenceofhiddentopicswhichgeneratedthegivendocument.Segmentationbreaksoccurwhenthevalueofthetopicvariablechangesfromonewindowtothenext.TheViterbialgo-rithmrequirestheobservationprobabilityforeachtimestep.WhiletheHMMusesthenaiveBayesassumptiontocomputethisdistribution,wetreateachasanewsegmentlabelandcomputeviatheaspectmodel.Oneproblemwiththeaspectmodelisthatitisnotatrulygenerativemodelwithre-

parameterisadiscretedistributionoverthesetofspecttodocumentlabels.The

trainingdocuments.Therefore,themodelcanonlycomputeconditionalprobabilitiesaboutthosesegmentswhichitwasexposedtointraining.IntheViterbialgorithm,weneedto ndforsomeobservationwindow.Thisobservationisnotadocu-mentlabelthatthemodelhasseenbefore.Toproperly nd,oneshouldretrainthemodelusingEMonthetrainingcorpusaswellasandthewordsitcontains.However,thisisveryinef cient.Inpractice,onecanuseanonlineapproximationtoEMto nd.Weuseavariantasdescribedin[3].Letwheredenotesnowordanddenotesthefullobservation.Weapproximaterecursivelyasfollows.

Topic segmentation with an aspect hidden Markov model(8).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219