Topic segmentation with an aspect hidden Markov model(4)

时间:2025-04-26

We present a novel probabilistic method for partially unsupervised topic segmentation on unstructured text. Previous approaches to this problem utilize the hidden Markov model framework (HMM). The HMM treats a document as mutually independent sets of words

1

1Introduction

Intheclassicalinformationretrieval(IR)problem,ausersearchesinacorpusoftextfordocumentswhichsatisfyherinformationneeds.Thisframeworkassumesanotionofdocumenti.e.thatthecorpusisdividedintocohesivesetsofwordseachexpressingasmallnumberofinformationneeds.

Insomesearch-worthytextcorpora,suchasnewswirefeeds,televisionclosedcap-tions,orautomaticspeechrecognition(ASR)transcriptsofstreamingaudio,thereisnoexplicitrepresentationofadocument.Thereareimplicitdocumentbreaks(e.g.televisionshows,radiosegments)butnocleardemarcationsofwheretheyoccur.Seg-mentationisacriticalsubtaskoftheIRprobleminthesesituations.

Tothisend,weimplementedanovelprobabilisticmethodoftopicsegmentationwhichcombinesasegmentinghiddenMarkovmodel[6]andanaspectmodel[5].Inthispaper,wedescribeourmethodanddemonstrategoodresultswhenappliedtonoisyASRtranscriptsandstreamsofclean(error-free)unsegmentedtext.

Thispaperisdividedintosixsections.Insection2,wesummarizeofprevioustechniquesanddescribehowourmethodrelatestothem.Insection3,wedescribethestandardHMMsegmentationapproach.Insection4,wedescribethetheorybehindtheaspectHMMapproach.Insection5,wereportonexperimentsonbothcleanandASRtext.Insection6,wepresentourconclusionsandsuggestionsforfuturework.2PreviousWork

Thereisaconsiderablebodyofpreviousresearchonwhichthisworkbuilds.Hearst[4]developedtheTextTilingalgorithmwhichusesawordsimilaritymeasurebetweensen-tencesto ndthepointbetweenparagraphsatwhichthetopicchanges.Thisapproachiseffectiveoncleantextwithexplicitsentenceandparagraphstructure.However,itisdif culttoimplementontextproducedbyaspeechrecognitionengine.InadditiontotheunstructurednatureofASRoutput,speechrecognitionenginesonunrestrictedaudiooftenhaveworderrorratesintherangeof20%to50%.SinceHearst’salgorithmcomputescosinesimilaritybetweenrelativelysmallgroupsofwordsoneithersideofasentenceboundary,itisunclearwhetheritwouldberobustenoughinthefaceofmanyerroneouswords.

Beefermanetal.[1]introducedafeature-basedsegmentationmethodwhichdoesnotrequiretextwithparagraphandsentencestructure.Thoughtheirmethodworkswell,manyofthederivedfeaturesarebasedonidentifyingcue-wordswhichindicateanimpendingtopicshift.Inourdomain,higherrorratesoftencloudsuchcuewordsmakingthemdif culttolearnanddetect.

ThemethodwepresentbuildsdirectlyontheHiddenmarkovmodel(HMM)ap-proachofMulbregtetal.[6].Weextendthismodelbyembeddingtheaspectmodel[5]intheHMM.Thisallowsforauni edmodelwithinwhichwe ndbothsegmentclusterstotraintransitionprobabilitiesandlanguagemodelstodetermineobservationemissionprobabilities.

…… 此处隐藏:771字,全部文档内容请下载后查看。喜欢就下载吧 ……
Topic segmentation with an aspect hidden Markov model(4).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219