Topic segmentation with an aspect hidden Markov model(10)

时间:2025-04-26

We present a novel probabilistic method for partially unsupervised topic segmentation on unstructured text. Previous approaches to this problem utilize the hidden Markov model framework (HMM). The HMM treats a document as mutually independent sets of words

5.1AspectmodelEMtraining7

Figure3:TemperedEMconvergenceintheATCandNYTcorpora

Withintheseshowsthereare4,917segmentswithavocabularyof35,777uniqueterms.Theshowsconstituteabout4millionwords.Weestimatedtheworderrorrateinthiscorporatobeinthe30%to40%range.Notethattheseareonlyestimatescomputedfromsamplingthecorporaasperfecttranscriptsareunavailabletous.

Additionally,weanalyzedacorpusof3,830articlesfromtheNewYorkTimes(NYT)tocomparetheASRperformancewitherror-freetext.Thiscorpusconstitutesabout4millionwordswithavocabularyof70,792uniqueterms.Inallreportedexper-iments,welearnanaspectmodelwith20hiddenfactors.

5.1AspectmodelEMtraining

Figure3illustratestheperformanceonheldoutdataduringthetemperedEMtrainingoftheaspectmodel(seesection4.1).ThoughtheNYTcorpustakeslongertoconverge(duetothehighervocabularysize),itlearnsmorequicklythantheATCcorpussincethetextcontainsnoerrors.TheATCconvergesfaster(duetothesmallervocabularysize)butstaysatalowCoAP(seesection5.3)forseveraliterationsbeforeperformanceimproves.

5.2Sampleresultsandtopiclabels

Inourexperiments,weusethreevariantsofourtwocorpora.First,wecreaterandomsequencesofsegmentsfromtheATCcorpus.Second,wecreaterandomsequencesfromtheNYTcorpustocomparecleanversusnoisysegmentation.Finally,weusetheactualairedsequencesofATCsegmentssincethisisdomainoftheprimaryproblemwhichwearetryingtotackle.

Intherandomsequencesofsegments,weattainalmostperfectsegmentationonbothcorpora.However,theresultsaremixedwiththeoriginalbroadcastsoftheATC.

Topic segmentation with an aspect hidden Markov model(10).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219