Topic segmentation with an aspect hidden Markov model(5)

时间:2025-04-27

We present a novel probabilistic method for partially unsupervised topic segmentation on unstructured text. Previous approaches to this problem utilize the hidden Markov model framework (HMM). The HMM treats a document as mutually independent sets of words

23HMMSEGMENTATION

Figure1:AgraphicalmodelrepresentingthesegmentingHMM

3HMMSegmentation

InthesegmentingHMMframework,anunsegmenteddocumentistreatedasacollec-tionofmutuallyindependentsetsofwords.Themodelpositsthateachsetisprob-abilisticallygeneratedbyahiddentopicvariableinaseries.Transitionprobabilitiesbetweentopicsdeterminethenexthiddenvariableinthesequence.

Asagenerativemodel,theHMMpositsthatadocumentisproducedbythefol-lowingprocess:chooseatopicfromaninitialdistributionoftopics;generateasetofindependentwordsfromadistributionoverwordsassociatedwiththattopic;chooseanothertopic,possiblythesametopicfromadistributionofallowedtransitions;repeatthisprocess.Givenanew,unsegmenteddocument,oneinvertsthisprocessbycalculat-ingthemostlikelysetoftopicswhichgeneratedthe-wordsetsofthegivendocument.Topicbreaksoccuratthepointswherethevalueofthetopicvariableschange.

Moreformally,aresetsofwordsandaregen-eratedbyatopic.Eachdependsonlyonandtheareindependentofeachothergiven.Thisisillustratedinthegraphicalmodelin gure1.Circlesrepre-sentrandomvariablesandarrowsindicatepossiblydependency.Theboxaroundindicatesthatthisrandomvariableisrepeatedtimesforeachtopicvariableintheseries.

TheHMMisparameterizedbyatransitionprobabilitydistributionbetweentopicsandasetoftopic-basedunigramlanguagemodelsforeachpossiblevalueof.Totrainthemodel,asetofsegmentsfromacorpusisclusteredusingthe-meansalgorithm.Aunigramlanguagemodeliscomputedforeachoftheseclustersandanappropriatesmoothingtechniqueisappliedtoaccountforsparsity.Thetransitionprob-

isaparameterwhichisseparatelyabilitydistributionbetweentopicstates

tunedin[6].Wesimplyusenormalizedcountsoftransitionsbetweenclustersinthetrainingsettoestimateit.Notethatthismodelrequiresasegmentedcorpustotrain,butworksinanunsupervisedmannertoclusterthosesegments.

Tosegmentanewdocument,thestreamoftextisdividedintoasequenceof

ofwordseach.TheViterbialgorithm[7],adynamicprogram-observations

mingtechnique,isusedto ndthemostlikelyhiddensequenceoftopicstates

givenanobservedsequenceofwordsets.Topicbreaksoccurwhen.

…… 此处隐藏:285字,全部文档内容请下载后查看。喜欢就下载吧 ……
Topic segmentation with an aspect hidden Markov model(5).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219