Topic segmentation with an aspect hidden Markov model(15)

时间:2025-04-27

We present a novel probabilistic method for partially unsupervised topic segmentation on unstructured text. Previous approaches to this problem utilize the hidden Markov model framework (HMM). The HMM treats a document as mutually independent sets of words

12REFERENCESexploreatemporalanalysisofourdataandmodellongtermtopicshiftsinthehiddenfactorsandlanguagemodels.

References

[1]DougBeeferman,AdamBerger,andJohnLafferty.Statisticalmodelsfortext

segmentation.MachineLearning,1999.

[2]A.P.Dempster,ird,andD.B.Rubin.Maximumlikelihoodfromincom-

pletedataviatheemalgorithm.JournaloftheRoyalStatisticalSociety,SeriesB(Methodological),39(1):1–38,1977.

[3]DanielGildeaandThomasHofmann.Topic-basedlanguagemodelsusingem.

EuroSpeech-99,pages2167–2170,1999.

[4]MartiA.Hearst.Contextandstructureinautomatedfull-textinformationaccess.

puterScienceDivisionTech-nicalReport,1994.

[5]ThomasHofmann.Probabilisticlatentsemanticindexing.Proceedingsofthe

Twenty-SecondAnnualInternationalSIGIRConferenceonResearchandDevel-opmentinInformationRetrieval,1999.

[6]P.vanMulbregt,I.Carp,L.Gillick,S.Lowe,andJ.Yamron.Textsegmentation

andtopictrackingonbroadcastnewsviaahiddenmarkovmodelapproach.1998.

[7]AndrewJ.Viterbi.Errorboundsforconvolutionalcodesandanasymptotically

optimaldecodingalgorithm.IEEETransactionsonInformationTheory,13:260–269,1967.

Topic segmentation with an aspect hidden Markov model(15).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219