小学数学奥数基础教程(四年级)30讲(8)

发布时间:2021-06-07

小学四年级奥数基础教程全30讲

除。在这样的四位数中,最大的和最小的各是多少? 4.五位数

能被12整除,求这个五位

数。

5.有一个能被24整除的四位数□23□,这个四位数最大是几?最小是几?

6.从0,2,3,6,7这五个数码中选出四个,可以组成多少个可以被8整除的没有重复数字的四位数?

7.在123的左右各添一个数码,使得到的五位数能被72整除。

8.学校买了72只小足球,发票上的总价有两个数字已经辨认不清,只看到是□67.9□元,你知道每只小足球多少钱吗?

第5讲 弃九法

从第4讲知道,如果一个数的各个数位上的数字之和能被9整除,那么这个数能被9整除;如果一个数各个数位上的数字之和被9除余数是几,那么这个数被9除的余数也一定是几。利用这个性质可以迅速地判断一个数能否被9整除或者求出被9除的余数是几。

例如,3645732这个数,各个数位上的数字之和为

3+6+4+5+7+3+2=30,

30被9除余3,所以3645732这个数不能被9整除,且被9除后余数为3。

但是,当一个数的数位较多时,这种计算麻烦且易错。有没有更简便的方法呢?

因为我们只是判断这个式子被9除的余数,所以凡是若干个数的和是9时,就把这些数划掉,如3+6=9,4+5=9,7+2=9,把这些数划掉后,最多只剩下一个3(如下图),所以这个数除以9的余数是3。

这种将和为9或9的倍数的数字划掉,用剩下的数字和求除以9的余数的方法,叫做弃九法。 一个数被9除的余数叫做这个数的九余数。利用弃九法可以计算一个数的九余数,还可以检验四则运算的正确性。

例1 求多位数7645821369815436715除以9的余数。

分析与解:利用弃九法,将和为9的数依次划掉。

只剩下7,6,1,5四个数,这时口算一下即可。口算知,7,6,5的和是9的倍数,又可划掉,只剩下1。所以这个多位数除以9余1。

例2 将自然数1,2,3, 依次无间隔地写下去组成一个数1234567891011213 如果一直写到自然数100,那么所得的数除以9的余数是多少? 分析与解:因为这个数太大,全部写出来很麻烦,在使用弃九法时不能逐个划掉和为9或9的倍数的数,所以要配合适当的分析。我们已经熟知 1+2+3+ +9=45,

而45是9的倍数,所以每一组1,2,3, ,9都可以划掉。在1~99这九十九个数中,个位数有十组1,2,3, ,9,都可划掉;十位数也有十组1,2,3, ,9,也都划掉。这样在这个大数中,除了0以外,只剩下最后的100中的数字1。所以这个数除以9余1。

在上面的解法中,并没有计算出这个数各个数位上的数字和,而是利用弃九法分析求解。本题还有其它简捷的解法。因为一个数与它的各个数位上的数字之和除以9的余数相同,所以题中这个数各个数位上的数字之和,与1+2+ +100除以9的余数相同。

利用高斯求和法,知此和是5050。因为5050的数字和为5+0+5+0=10,利用弃九法,弃去一个9余1,故5050除以9余1。因此题中的数除以9余1。

例3 检验下面的加法算式是否正确:

2638457+3521983+6745785=12907225。 分析与解:若干个加数的九余数相加,所得和的九余数应当等于这些加数的和的九余数。如果不等,那么这个加法算式肯定不正确。上式中,三个加数的九余数依次为8,4,6,8+4+6的九余数为0;和的九余数为1。因为0≠1,所以这个算式不正确。 例4 检验下面的减法算式是否正确: 7832145-2167953=5664192。

分析与解:被减数的九余数减去减数的九余数(若不够减,可在被减数的九余数上加9,然后再减)应当等于差的九余数。如果不等,那么这个减法计算肯定不正确。上式中被减数的九余数是3,减数的九余数是6,由(9+3)-6=6知,原题等号左边的九余数是6。等号右边的九余数也是6。因为6=6,所以这个减法运算可能正确。

值得注意的是,这里我们用的是“可能正确”。利用弃九法检验加法、减法、乘法(见例5)运算

小学数学奥数基础教程(四年级)30讲(8).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219