小学数学奥数基础教程(四年级)30讲(5)

发布时间:2021-06-07

小学四年级奥数基础教程全30讲

练习2

计算下列各题:

1.68×62; 2.93×97; 3.27×87; 4.79×39; 5.42×62; 6.603×607; 7.693×607; 8.4085×6085。

第3讲 高斯求和

德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+ +99+100=?

老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:

1+100=2+99=3+98= =49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如: (1)1,2,3,4,5, ,100;

(2)1,3,5,7,9, ,99;(3)8,15,22,29,36, ,71。

其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:

和=(首项+末项)×项数÷2。 例1 1+2+3+ +1999=?

分析与解:这串加数1,2,3, ,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得

原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。 例2 11+12+13+ +31=?

分析与解:这串加数11,12,13, ,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

原式=(11+31)×21÷2=441。

在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到

项数=(末项-首项)÷公差+1, 末项=首项+公差×(项数-1)。 例3 3+7+11+ +99=?

分析与解:3,7,11, ,99是公差为4的等差数列,

项数=(99-3)÷4+1=25, 原式=(3+99)×25÷2=1275。

例4 求首项是25,公差是3的等差数列的前40项的和。

解:末项=25+3×(40-1)=142, 和=(25+142)×40÷2=3340。

利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。

例5 在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?

分析:最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表:

上表看出,各层的小三角形数成等差数列,各层的火柴数也成等差数列。

解:(1)最大三角形面积为 (1+3+5+ +15)×12 =[(1+15)×8÷2]×12 =768(厘米2)。 2)火柴棍的数目为 3+6+9+ +24

=(3+24)×8÷2=108(根)。

答:最大三角形的面积是768厘米2,整个图形由108根火柴摆成。

小学数学奥数基础教程(四年级)30讲(5).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219