小学数学奥数基础教程(四年级)30讲(10)
发布时间:2021-06-07
发布时间:2021-06-07
小学四年级奥数基础教程全30讲
分析与解:最大的没有重复数字的九位数是987654321,由
(9+7+5+3+1)-(8+6+4+2)=5 知,987654321不能被11整除。为了保证这个数尽可能大,我们尽量调整低位数字,只要使奇数位的数字和增加3(偶数位的数字和自然就减少3),奇数位的数字之和与偶数位的数字之和的差就变为5+3×2=11,这个数就能被11整除。调整“4321”,只要4调到奇数位,1调到偶数位,奇数位就比原来增大3,就可达到目的。此时,4,3在奇数位,2,1在偶数位,后四位最大是2413。所求数为987652413。 例6 六位数
能被99整除,求A和B。
分析与解:由99=9×11,且9与11互质,所以六位数既能被9整除又能被11整除。因为六位数能被9整除,所以 A+2+8+7+5+B =22+A+B
应能被9整除,由此推知A+B=5或14。又因为六位数能被11整除,所以 (A+8+5)-(2+7+B) =A-B+4
应能被11整除,即 A-B+4=0或A-B+4=11。 化简得B-A=4或A-B=7。
因为A+B与A-B同奇同偶,所以有
在(1)中,A≤5与A≥7不能同时满足,所以无解。
在(2)中,上、下两式相加,得 (B+A)+(B-A)=14+4, 2B=18, B=9。
将B=9代入A+B=14,得A=5。 所以,A=5,B=9。 练习6
1.为使五位数6□295能被11整除,□内应当填几?
2.用1,2,3,4四个数码能排出哪些能被11整除的没有重复数字的四位数?
3.求能被11整除的最大的没有重复数字的五位数。
4.求下列各数除以11的余数:
(1)2485; (2)63582; (3)987654321。
5.求除以11的余数。
6.六位数5A634B能被33整除,求
A+B。
7.七位数3A8629B是88的倍数,求
A和B。
第7讲 找规律(一)
我们在三年级已经见过“找规律”这个题目,学习了如何发现图形、数表和数列的变化规律。这一讲重点学习具有“周期性”变化规律的问题。什么是周期性变化规律呢?比如,一年有春夏秋冬四季,百花盛开的春季过后就是夏天,赤日炎炎的夏季过后就是秋天,果实累累的秋季过后就是冬天,白雪皑皑的冬季过后又到了春天。年复一年,总是按照春、夏、秋、冬四季变化,这就是周期性变化规律。再比如,数列0,1,2,0,1,2,0,1,2,0, 是按照0,1,2三个数重复出现的,这也是周期性变化问题。
下面,我们通过一些例题作进一步讲解。 例1 节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接3盏黄灯,然后又是5盏红灯、4盏蓝灯、3盏黄灯、 这样排下去。问: (1)第100盏灯是什么颜色?
(2)前150盏彩灯中有多少盏蓝灯? 分析与解:这是一个周期变化问题。彩灯按照5红、4蓝、3黄,每12盏灯一个周期循环出现。
(1)100÷12=8 4,所以第100盏灯是第9个周期的第4盏灯,是红灯。
(2)150÷12=12 6,前150盏灯共有12个周期零6盏灯,12个周期中有蓝灯4×12=48(盏),最后的6盏灯中有1盏蓝灯,所以共有蓝灯48+1=49(盏)。
例2 有一串数,任何相邻的四个数之和都等于25。已知第1个数是3,第6个数是6,第11个数是7。问:这串数中第24个数是几?前77个数的和是多少?
分析与解:因为第1,2,3,4个数的和等于第2,3,4,5个数的和,所以第1个数与第5个数相同。进一步可推知,第1,5,9,13, 个数都相同。 同理,第2,6,10,14, 个数都相同,第3,7,11,15, 个数都相同,第4,8,12,16 个数都相同。
上一篇:《出版物上数字用法》解读